scholarly journals БІОЛОГІЧНЕ ЗНАЧЕННЯ СИСТЕМИ АНТИОКСИДАНТНОГО ЗАХИСТУ ОРГАНІЗМУ ТВАРИН

2016 ◽  
Vol 18 (2(66)) ◽  
pp. 100-112 ◽  
Author(s):  
Y.Y. Lavryshyn ◽  
I.S. Varkholyak ◽  
T.V. Martyschuk ◽  
Z.А. Guta ◽  
L.B. Ivankiv

In the review of  the literature it was generalized the data due to the classification and characterization of antioxidant protection system of animals body. This model combines a number of different by its nature substances. Each of the components of the antioxidant system operates in close relationship with its other structural elements, harmoniously, and in many cases complements and in many cases - enhances the action of each other. Glutathione system forms functional basis of antioxidant defense system, constituent elements of which has its own glutathione and enzymes, which catalyze the reaction of its reverse transformation (oxidation ↔ recovery). Glutathione peroxidase, glutathione reductase and glucose-6-phosphate dehydrogenase are attributed to these enzymes.Most researchers conventionally distributed antioxidant defense system in enzyme and non-enzyme. Catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione transferase and other enzymes are included to enzymatic link of antioxidant defense system. Fat-soluble vitamins A, E and K, water-soluble vitamins C and PP, biogenic amines, glutathione, carotenoids, ubiquinone, sterols are included to  non-enzyme system. As the enzyme, as non-enzyme antioxidant defense system is present in the bloodstream. The activity of enzymatic antioxidant system is well regulated and depends on the age of the animals, physiological condition, the dynamics of hormone, synthesis intensity of antioxidant enzyme, pH  medium, the presence of coenzymes, inhibitors, activators, and other factors. Non-enzyme link of antioxidant system does not need so many regulators as the most chemical substance - antioxidant - enters into chemical reaction with the radical. The rate of reaction may be only changed.

2016 ◽  
Vol 18 (2(66)) ◽  
pp. 112-116
Author(s):  
P.Y. Lavriv

The article  deals with the results of experimental research data of relationship between the antioxidant defense system and lipid body peroxidation of high calves cows  under  the influence of nanpreparation Germakap conducted  with simultaneous vaccination with inactivated formol vaccination with repeated  in two weeks later  at the same doses as their  stability and immunity to Salmonella. It was found the likely increase in activity of glutathione peroxidase and glutathione reductase and at the same time, reduction of malon dialdehyde and hydroperoxides lipids and superoxidimutase. These changes in animals  body occur due to complex components adaptive nan preparation Germakap that lead to the normalization of metabolic and free radical processes in animals.  However, the increase in the catalytic activity of glutathione peroxidase and glutathione reductase activity in plasma of high calves cows  from research group can be explained by increasing intensity of synthesis in which these enzymes by introducing nan preparation Germakap closely associated with the regeneration of glutathione in the cell, and also the activity of glutathione peroxidase.  Through interaction with restoration of glutathione and glutathione peroxidase, glutathione reductase it was formed glutathione system that protects cells from stress peroxidation


2016 ◽  
Vol 24 (1) ◽  
pp. 96-102 ◽  
Author(s):  
B. V. Gutyj ◽  
S. D. Mursjka ◽  
D. F. Hufrij ◽  
I. I. Hariv ◽  
N. D. Levkivska ◽  
...  

This article presents the results of research on the influence of cadmium loading on the state level of enzymatic and non-enzymatic antioxidant links of the antioxidant defense system of the organisms of young cattle, such as the activity of catalase, superoxide dismutase, glutathione peroxidase, glutathione levels, selenium, vitamins A and E. It was found that feeding bull calves with cadmium chloride at doses of 0.03 and 0.05 mg/kg of body weight helped to reduce both the enzymatic and non-enzymatic link of antioxidant protection (superoxide dismutase 31%, catalase 13%, glutathione peroxidase 23%, reduced glutathione 10%, vitamin A 28%, vitamin E 31%, selenium 20%). Toxic effects of cadmium promotes change in steady-state concentrations of radical metabolites О2–,ОН˙, НО2˙, which, in turn, trigger the process of lipid peroxidation. The lowest level of indicators of antioxidant defense system in the blood of young cattle was registered on the sixteenth and twenty-fourth days of the experiment, which is associated with increased activation of lipid peroxidation and the disturbaance of the balance between the antioxidant system and lipid peroxidation intensity. The activity of the antioxidant defense system in the blood was different for calves fed with cadmium chloride at doses of 0.03 and 0.05 mg/kg of animal mass. The more cadmium chloride in the feed, the lower the activity of the antioxidant defense system of the calves’ organisms was registered. Thus cadmium chloride depresses the antioxidant defense system, which specifically involves lowering the activity of enzymatic links (catalase, superoxide dismutase, glutathione peroxidase) and non-enzymatic links (reduced glutathione, selenium, vitamins A and E).


2021 ◽  
Vol 23 (1) ◽  
pp. 119
Author(s):  
Jacek Grebowski ◽  
Paulina Kazmierska-Grebowska ◽  
Natalia Cichon ◽  
Piotr Piotrowski ◽  
Grzegorz Litwinienko

Background: Fullerenols (water-soluble derivatives of fullerenes), such as C60(OH)36, are biocompatible molecules with a high ability to scavenge reactive oxygen species (ROS), but the mechanism of their antioxidant action and cooperation with endogenous redox machinery remains unrecognized. Fullerenols rapidly distribute through blood cells; therefore, we investigated the effect of C60(OH)36 on the antioxidant defense system in erythrocytes during their prolonged incubation. Methods: Human erythrocytes were treated with fullerenol at concentrations of 50–150 µg/mL, incubated for 3 and 48 h at 37 °C, and then hemolyzed. The level of oxidative stress was determined by examining the level of thiol groups, the activity of antioxidant enzymes (catalase, glutathione peroxidase, glutathione reductase, and glutathione transferase), and by measuring erythrocyte microviscosity. Results: The level of thiol groups in stored erythrocytes decreased; however, in the presence of higher concentrations of C60(OH)36 (100 and 150 µg/mL), the level of -SH groups increased compared to the control. Extending the incubation to 48 h caused a decrease in antioxidant enzyme activity, but the addition of fullerenol, especially at higher concentrations (100–150 µg/mL), increased its activity. We observed that C60(OH)36 had no effect on the microviscosity of the interior of the erythrocytes. Conclusions: In conclusion, our results indicated that water-soluble C60(OH)36 has antioxidant potential and efficiently supports the enzymatic antioxidant system within the cell. These effects are probably related to the direct interaction of C60(OH)36 with the enzyme that causes its structural changes.


2001 ◽  
Vol 71 (1) ◽  
pp. 87-92 ◽  
Author(s):  
Allen D. Smith ◽  
Virginia C. Morris ◽  
Orville A. Levander

Gluthatione peroxidase and thioredoxin reductase are selenocysteine-containing enzymes that are constituents of the cellular antioxidant defense system. Conventional cuvette-based assays for glutathione peroxidase and thioredoxin reductase enzymes are laborious and time consuming. The ability to assay their activities rapidly in multiple samples would aid efforts focused on understanding the impact of these enzymes on the cellular antioxidant defense system. High throughput can be achieved with assays adapted to work in a clinical analyzer but require expensive equipment. Assays designed to work in a 96-well microplate reader provide an alternative methodology for high throughput with reduced instrumentation cost. However, due to differences in the light pathlength when using a 96-well format, the values obtained cannot be compared directly with those obtained using a 1-cm cuvette. Described here are assays for glutathione peroxidase and thioredoxin reductase modified to work in a 96-well format that incorporates light pathlength determinations into the assays. The values obtained using a high throughput 96-well format in conjunction with pathlength determinations are in agreement with those obtained using a standard 1-cm cuvette. While spectrophotometrically derived pathlengths are the most accurate, calculated pathlengths based on assay volume and well size can be used with only a small amount of error introduced. This method can also be applied to many other enzyme assays, thus allowing the rapid analysis of large numbers of samples without the need for expensive equipment.


The literature review summarizes the data on the classification and characteristics of the antioxidant defense system. This model combines a number of different substances. Each of the components of the antioxidant system acts in close connection with its other structural elements, harmoniously complements, and in many cases – enhances the action of each other. The functional basis of the system of antioxidant protection is formed by the glutathione system, the constituent elements of which are actually glutathione and enzymes that catalyze the reactions of its reverse transformation (oxidation ↔ reduction). Most researchers conventionally divide the system of antioxidant protection into enzymatic and non-enzymatic. The enzyme links of the antioxidant defense system include: catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase, glutathione transferase and other enzymes. The non-enzymatic system includes fat-soluble vitamins A, E and K, water-soluble vitamins C and PP, biogenic amines, glutathione, carotenoids, ubiquinone, sterols. Both enzymatic and non-enzymatic antioxidant defense systems are present in the bloodstream. The activity of the enzymatic antioxidant system is very well regulated and depends on age, physiological condition, hormone dynamics, intensity of antioxidant enzyme synthesis, pH, presence of coenzymes, inhibitors, activators and other factors. The non-enzymatic part of the antioxidant system does not require as many regulators as the chemical itself - the antioxidant - reacts chemically with the radical. Only the reaction rate can change. The lungs are directly exposed to oxygen and oxidants of polluted air, they are most sensitive to oxidative damage, so they have an increased possibility of free radical reactions. Protection against the damaging effects of reactive oxygen species and free radicals is provided by anti-radical protective systems, especially the glutathione system and its enzymes. Numerous papers have obtained clinical and experimental data on the important role of free radical oxidation of lipids (FROL) and antioxidant systems (AOS) protection in the development of many diseases, including pulmonary tuberculosis (TB). The review presents modern views on the state of the system of lipid peroxidation (LPO) and antioxidant protection in TB. The main topic of the review is information on the generation of free radical compounds by different populations of leukocytes with further enhancement of LPO and secondary deepening of functional disorders. The article substantiates the feasibility of identifying LPO products as non-specific markers of aseptic inflammation in TB and the need to develop new generations of antioxidants. One of the universal mechanisms of damage to cell membranes is LPO, the excessive activation of which is normally prevented by factors of the antioxidant defense system. Membrane-bound enzymes involved in the formation of LPO products include lipoxy and cyclooxygenases. Lipoperoxidation processes change the structure and phospholipid composition of cell membranes, which negatively affects the cellular immune response due to damage to the mechanisms of information transfer from extracellular regulators to intracellular effector systems.


2022 ◽  
Vol 20 (4) ◽  
pp. 63-70
Author(s):  
O. V. Smirnova ◽  
V. V. Tsukanov ◽  
A. A. Sinyakov ◽  
O. L. Moskalenko ◽  
N. G. Elmanova ◽  
...  

Background. The problem of gastric cancer remains unresolved throughout the world, while chronic atrophic gastritis (CAG) increases the likelihood of its development by 15 times. In the Russian Federation, the incidence of gastric cancer (GC) is among the highest, with it prevailing among males. One of the leading mechanisms in molecular pathology of membranes is lipid peroxidation (LPO). The severity of oxidative membrane damage depends on concomitant diseases, contributing to emergence and progression of pathological processes and development of cancer. Currently, the problem of LPO is unsolved in biological systems.The aim of this study was to investigate the state of LPO and antioxidant defense system in CAG and GC. Materials and methods. The parameters were studied in 45 patients with CAG and 50 patients with GC. The control group included 50 practically healthy volunteers without gastrointestinal complaints, who did not have changes in the gastric mucosa according to the fibroesophagogastroduodenoscopy (FEGDS) findings.Results. In patients with CAG, an increase in malondialdehyde, superoxide dismutase, catalase, glutathione S-transferase, and glutathione peroxidase was found in the blood plasma compared with the control group. In patients with CAG, lipid peroxidation was activated, and the malondialdehyde level increased by 3.5 times relative to normal values. At the same time, the body fought against oxidative stress by increasing the activity of antioxidant enzymes, such as superoxide dismutase, catalase, glutathione S-transferase, and glutathione peroxidase. All patients with GC showed pronounced oxidative stress in the blood plasma in the form of a 45-fold increase in malondialdehyde. The activity of the main antioxidant enzyme superoxide dismutase was reduced in GC. Catalase was activated, which indicated pronounced oxidative stress, significant damage to blood vessels, and massive cell death. Glutathione-related enzymes (glutathione S-transferase and glutathione peroxidase) and the antioxidant protein ceruloplasmin were activated, which also indicated significant oxidative stress and severe intoxication in patients with GC.Conclusion. Depending on the stage and type of cancer, an in-depth study of lipid peroxidation and factors of the antioxidant defense system can be used to correct therapy and prevent cancer and can serve as markers of progression and prognosis in gastric cancer. 


2021 ◽  
Vol 6 (1) ◽  
pp. 107-112
Author(s):  
T. M. Pasiieshvili ◽  

Antioxidant defense is considered in the context of a universal system, which, together with the components of the immune system, provides hemodynamic balance and antigenic homeostasis of the body, that is, the work of this system, represented by two practically independent links. The first line of the antioxidant system, the work of which is associated with the activity of superoxide dismutase, catalase, ceruloplasmin and a number of other enzymatic and non-enzymatic components, is considered an initial barrier, provides support at a constant controlled level of free radical oxidation. However, there is insufficient data in previous studies regarding the antioxidant defense system in patients with gastrointestinal disorders associated with thyroid disease. The purpose of the work was to establish the state of the antioxidant system in terms of total antioxidant activity and 8-isoprostane in young people with gastroesophageal reflux disease and autoimmune thyroiditis. Material and methods. The work involved 120 people with a combined course of gastroesophageal reflux disease and autoimmune thyroiditis at the age from 18 to 25 years. All patients had the same social status (students), which made it possible to equalize both physical and emotional stress, peak and stressful situations. Results and discussion. We examined the indicators of total antioxidant activity: the aggregate value of enzymes of the first level of the antioxidant system and 8-isoprostane, the level of the non-enzymatic link in antioxidant protection. These indicators depended on the morphological form of damage to the mucous membrane of the esophagus: they were more expressive in the erosive form of esophagitis. Thus, the combined course of gastroesophageal reflux disease and autoimmune thyroiditis is accompanied by changes in the indicators of the antioxidant system as a result of an active inflammatory process in the esophageal mucosa. There is a decrease in the total antioxidant activity, the first line of the antioxidant system, the value of which depends on morphological changes in the esophageal mucosa. Conclusion. An active inflammatory process in patients with gastroesophageal reflux disease and autoimmune thyroiditis leads to an increase in 8-isoprostane, an indicator of a non-enzymatic link in the antioxidant defense system


Sign in / Sign up

Export Citation Format

Share Document