Use of Domain Knowledge and Feature Engineering in Helping AI to Play Hearthstone

Author(s):  
Przemysław Przybyszewski ◽  
Szymon Dziewiątkowski ◽  
Sebastian Jaszczur ◽  
Mateusz Śmiech ◽  
Marcin Szczuka

2019 ◽  
Vol 9 (19) ◽  
pp. 3945 ◽  
Author(s):  
Houssem Gasmi ◽  
Jannik Laval ◽  
Abdelaziz Bouras

Extracting cybersecurity entities and the relationships between them from online textual resources such as articles, bulletins, and blogs and converting these resources into more structured and formal representations has important applications in cybersecurity research and is valuable for professional practitioners. Previous works to accomplish this task were mainly based on utilizing feature-based models. Feature-based models are time-consuming and need labor-intensive feature engineering to describe the properties of entities, domain knowledge, entity context, and linguistic characteristics. Therefore, to alleviate the need for feature engineering, we propose the usage of neural network models, specifically the long short-term memory (LSTM) models to accomplish the tasks of Named Entity Recognition (NER) and Relation Extraction (RE). We evaluated the proposed models on two tasks. The first task is performing NER and evaluating the results against the state-of-the-art Conditional Random Fields (CRFs) method. The second task is performing RE using three LSTM models and comparing their results to assess which model is more suitable for the domain of cybersecurity. The proposed models achieved competitive performance with less feature-engineering work. We demonstrate that exploiting neural network models in cybersecurity text mining is effective and practical.



2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Wentao Wei ◽  
Xuhui Hu ◽  
Hua Liu ◽  
Ming Zhou ◽  
Yan Song

As a machine-learning-driven decision-making problem, the surface electromyography (sEMG)-based hand movement recognition is one of the key issues in robust control of noninvasive neural interfaces such as myoelectric prosthesis and rehabilitation robot. Despite the recent success in sEMG-based hand movement recognition using end-to-end deep feature learning technologies based on deep learning models, the performance of today’s sEMG-based hand movement recognition system is still limited by the noisy, random, and nonstationary nature of sEMG signals and researchers have come up with a number of methods that improve sEMG-based hand movement via feature engineering. Aiming at achieving higher sEMG-based hand movement recognition accuracies while enabling a trade-off between performance and computational complexity, this study proposed a progressive fusion network (PFNet) framework, which improves sEMG-based hand movement recognition via integration of domain knowledge-guided feature engineering and deep feature learning. In particular, it learns high-level feature representations from raw sEMG signals and engineered time-frequency domain features via a feature learning network and a domain knowledge network, respectively, and then employs a 3-stage progressive fusion strategy to progressively fuse the two networks together and obtain the final decisions. Extensive experiments were conducted on five sEMG datasets to evaluate our proposed PFNet, and the experimental results showed that the proposed PFNet could achieve the average hand movement recognition accuracies of 87.8%, 85.4%, 68.3%, 71.7%, and 90.3% on the five datasets, respectively, which outperformed those achieved by the state of the arts.



Author(s):  
Anuja Arora ◽  
Aman Srivastava ◽  
Shivam Bansal

The conventional approach to build a chatbot system uses the sequence of complex algorithms and productivity of these systems depends on order and coherence of algorithms. This research work introduces and showcases a deep learning-based conversation system approach. The proposed approach is an intelligent conversation model approach which conceptually uses graph model and neural conversational model. The proposed deep learning-based conversation system uses neural conversational model over knowledge graph model in a hybrid manner. Graph-based model answers questions written in natural language using its intent in the knowledge graph and neural conversational model converses answer based on conversation content and conversation sequence order. NLP is used in graph model and neural conversational model uses natural language understanding and machine intelligence. The neural conversational model uses seq2seq framework as it requires less feature engineering and lacks domain knowledge. The results achieved through the authors' approach are competitive with solely used graph model results.



Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Aoshuang Ye ◽  
Lina Wang ◽  
Run Wang ◽  
Wenqi Wang ◽  
Jianpeng Ke ◽  
...  

The social network has become the primary medium of rumor propagation. Moreover, manual identification of rumors is extremely time-consuming and laborious. It is crucial to identify rumors automatically. Machine learning technology is widely implemented in the identification and detection of misinformation on social networks. However, the traditional machine learning methods profoundly rely on feature engineering and domain knowledge, and the learning ability of temporal features is insufficient. Furthermore, the features used by the deep learning method based on natural language processing are heavily limited. Therefore, it is of great significance and practical value to study the rumor detection method independent of feature engineering and effectively aggregate heterogeneous features to adapt to the complex and variable social network. In this paper, a deep neural network- (DNN-) based feature aggregation modeling method is proposed, which makes full use of the knowledge of propagation pattern feature and text content feature of social network event without feature engineering and domain knowledge. The experimental results show that the feature aggregation model has achieved 94.4% of accuracy as the best performance in recent works.



SPE Journal ◽  
2021 ◽  
Vol 26 (05) ◽  
pp. 2894-2913
Author(s):  
Erlend Magnus Viggen ◽  
Lasse Løvstakken ◽  
Svein-Erik Måsøy ◽  
Ioan Alexandru Merciu

Summary We investigate systems to automatically interpret cement evaluation logs using supervised machine learning (ML). Such systems can provide instant rough interpretations that may then be used as a basis for human interpretation. Here, we compare the performance of two approaches, one previously published and one new. The previous approach is based on deep convolutional neural networks (CNNs) that autonomously learn to extract features from well log data, whereas the new approach uses feature engineering, in which we use our own domain knowledge to extract features. We base this work on a data set of approximately 60 km of well log data. Specialist interpreters have classified these logs according to the bond quality (BQ; six ordinal classes) and hydraulic isolation (HI; two classes) of solids outside the casing. We train the ML systems to reproduce these reference interpretations in segments of 1 m in length. The CNNs directly receive log data as a collection of 2D images and 1D curves. In the feature-engineering approach, we combine the extracted features with various classifiers. For BQ, the CNNs' interpretation exactly matches the reference 51.6% of the time. It does not miss by more than one class 88.5% of the time. For HI, the CNNs match the reference 86.7% of the time. The best-performing feature-based classifier, which is an ensemble of individual classifiers, provides better results of 57.4, 89.5, and 88.9%, respectively. Our results indicate two main reasons why feature-based classifiers may perform particularly well on this task. First, there is some subjectivity inherent in the well log interpretations that are used to train and test ML systems. Second, well logs comprise many different and complex pieces of data. For these reasons, this data set may be particularly liable to overfitting. This may favor approaches based on feature engineering, where we apply our domain knowledge to extract a few pieces of essential information from the data instead of leaving the job of understanding the data to an ML system that may misinterpret spurious patterns as generalizable. It may also favor simpler classifiers with less overfitting capacity. This paper shows how petroleum researchers and engineers can implement automatic interpretation systems for cement evaluation logs using ML methods that are easier to apply and deploy while also performing better than an approach based on autonomous feature extraction. This approach could also be adapted for automatic interpretation of other types of well log data.



2021 ◽  
Author(s):  
Erlend Magnus Viggen ◽  
Lasse Løvstakken ◽  
Ioan Alexandru Merciu ◽  
Svein-Erik Måsøy

Abstract We build systems to automatically interpret cement evaluation logs using supervised machine learning (ML). Such systems can provide instant rough interpretations that may then be used as a basis for human interpretation. Here, we compare the performance of two approaches: A previously published approach based on deep convolutional neural networks (CNNs) that autonomously learn to extract features from well log data, and a feature-engineering approach where we use our own domain knowledge to extract features. We base this work on a dataset of around 60 km of well log data. Specialist interpreters have classified these logs according to the bond quality (6 ordinal classes) and hydraulic isolation (2 classes) of solids outside the casing. We train the ML systems to reproduce these reference interpretations in segments of 1 m length. The CNNs directly receive log data as a collection of 2D images and 1D curves. In the feature-engineering approach, we combine the extracted features with various classifiers. For bond quality, the CNNs’ interpretation exactly matches the reference 51.6% of the time. 88.5% of the time, it does not miss by more than one class. For hydraulic isolation, the CNNs match the reference 86.7% of the time. The best-performing feature-based classifier, which is an ensemble of individual classifiers, provides better results of 57.4%, 89.5%, and 88.9%, respectively. Our results indicate two main reasons why feature-based classifiers may perform particularly well on this task. First, there is some subjectivity inherent in the well log interpretations that are used to train and test ML systems. Second, well logs comprise many different and complex pieces of data. For these reasons, this dataset may be particularly liable to overfitting. This may favour approaches based on feature engineering, where we apply our domain knowledge to extract a few pieces of essential information from the data instead of leaving the job of understanding the data to an ML system that may misinterpret spurious patterns as generalisable. It may also favour simpler classifiers with less overfitting capacity. This article shows how petroleum researchers and engineers can implement automatic interpretation systems for cement evaluation logs using ML methods that are relatively easy to apply and deploy, with better results than an approach based on autonomous feature extraction. This approach could also be adapted for automatic interpretation of other types of well log data.



2021 ◽  
Vol 12 ◽  
Author(s):  
Sijie Yang ◽  
Fei Zhu ◽  
Xinghong Ling ◽  
Quan Liu ◽  
Peiyao Zhao

With the progress of medical technology, biomedical field ushered in the era of big data, based on which and driven by artificial intelligence technology, computational medicine has emerged. People need to extract the effective information contained in these big biomedical data to promote the development of precision medicine. Traditionally, the machine learning methods are used to dig out biomedical data to find the features from data, which generally rely on feature engineering and domain knowledge of experts, requiring tremendous time and human resources. Different from traditional approaches, deep learning, as a cutting-edge machine learning branch, can automatically learn complex and robust feature from raw data without the need for feature engineering. The applications of deep learning in medical image, electronic health record, genomics, and drug development are studied, where the suggestion is that deep learning has obvious advantage in making full use of biomedical data and improving medical health level. Deep learning plays an increasingly important role in the field of medical health and has a broad prospect of application. However, the problems and challenges of deep learning in computational medical health still exist, including insufficient data, interpretability, data privacy, and heterogeneity. Analysis and discussion on these problems provide a reference to improve the application of deep learning in medical health.





Author(s):  
Gregory K. W. K. Chung ◽  
Eva L. Baker ◽  
David G. Brill ◽  
Ravi Sinha ◽  
Farzad Saadat ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document