scholarly journals in vitro response of Colletotrichum to chitosan. Effect on incidence and quality on tropical fruit. Enzymatic expression in mango

2017 ◽  
Vol 66 (2) ◽  
Author(s):  
Porfirio Gutierréz Martínez ◽  
Silvia Bautista-Baños ◽  
Guillermo Berúmen-Varela ◽  
Anelsy Ramos-Guerrero ◽  
Alba María Hernández-Ibañez
Author(s):  
Tso-Chang Wu ◽  
Sameehan S. Joshi ◽  
Yee-Hsien Ho ◽  
Mangesh V. Pantawane ◽  
Subhasis Sinha ◽  
...  

2020 ◽  
Vol 30 (1) ◽  
Author(s):  
Zahaed Evangelista-Martínez ◽  
Erika Anahí Contreras-Leal ◽  
Luis Fernando Corona-Pedraza ◽  
Élida Gastélum-Martínez

Abstract Background Fungi are one of the microorganisms that cause most damage to fruits worldwide, affecting their quality and consumption. Chemical controls with pesticides are used to diminish postharvest losses of fruits. However, biological control with microorganisms or natural compounds is an increasing alternative to protect fruits and vegetables. In this study, the antifungal effect of Streptomyces sp. CACIS-1.5CA on phytopathogenic fungi that cause postharvest tropical fruit rot was investigated. Main body Antagonistic activity was evaluated in vitro by the dual confrontation over fungal isolates obtained from grape, mango, tomato, habanero pepper, papaya, sweet orange, and banana. The results showed that antagonistic activity of the isolate CACIS-1.5CA was similar to the commercial strain Streptomyces lydicus WYEC 108 against the pathogenic fungi Colletotrichum sp., Alternaria sp., Aspergillus sp., Botrytis sp., Rhizoctonia sp., and Rhizopus sp. with percentages ranging from 30 to 63%. The bioactive extract obtained from CACIS-1.5 showed a strong inhibition of fungal spore germination, with percentages ranging from 92 to 100%. Morphological effects as irregular membrane border, deformation, shrinkage, and collapsed conidia were observed on the conidia. Molecularly, the biosynthetic clusters of genes for the polyketide synthase (PKS) type I, PKS type II, and NRPS were detected in the genome of Streptomyces sp. CACIS-1.5CA. Conclusions This study presented a novel Streptomyces strain as a natural alternative to the use of synthetic fungicides or other commercial products having antagonistic microorganisms that were used in the postharvest control of phytopathogenic fungi affecting fruits.


Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2815
Author(s):  
Gang Ren ◽  
Xunzhen Zheng ◽  
Vandana Sharma ◽  
Joshua Letson ◽  
Andrea L. Nestor-Kalinoski ◽  
...  

Excessive myofibroblast activation, which leads to dysregulated collagen deposition and the stiffening of the extracellular matrix (ECM), plays pivotal roles in cancer initiation and progression. Cumulative evidence attests to the cancer-causing effects of a number of fibrogenic factors found in the environment, diseases and drugs. While identifying such factors largely depends on epidemiological studies, it would be of great importance to develop a robust in vitro method to demonstrate the causal relationship between fibrosis and cancer. Here, we tested whether our recently developed organotypic three-dimensional (3D) co-culture would be suitable for that purpose. This co-culture system utilizes the discontinuous ECM to separately culture mammary epithelia and fibroblasts in the discrete matrices to model the complexity of the mammary gland. We observed that pharmaceutical deprivation of nitric oxide (NO) in 3D co-cultures induced myofibroblast differentiation of the stroma as well as the occurrence of epithelial–mesenchymal transition (EMT) of the parenchyma. Such in vitro response to NO deprivation was unique to co-cultures and closely mimicked the phenotype of NO-depleted mammary glands exhibiting stromal desmoplasia and precancerous lesions undergoing EMT. These results suggest that this novel 3D co-culture system could be utilized in the deep mechanistic studies of the linkage between fibrosis and cancer.


Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 614
Author(s):  
Manoj Kumar ◽  
Sushil Changan ◽  
Maharishi Tomar ◽  
Uma Prajapati ◽  
Vivek Saurabh ◽  
...  

Annona squamosa L. (custard apple) belongs to the family Annonaceae and is an important tropical fruit cultivated in the West Indies, South and Central America, Ecuador, Peru, Brazil, India, Mexico, the Bahamas, Bermuda, and Egypt. Leaves of custard apple plants have been studied for their health benefits, which are attributed to a considerable diversity of phytochemicals. These compounds include phenol-based compounds, e.g., proanthocyanidins, comprising 18 different phenolic compounds, mainly alkaloids and flavonoids. Extracts from Annona squamosa leaves (ASLs) have been studied for their biological activities, including anticancer, antidiabetic, antioxidant, antimicrobial, antiobesity, lipid-lowering, and hepatoprotective functions. In the current article, we discussed the nutritional and phytochemical diversity of ASLs. Additionally, ASL extracts were discussed with respect to their biological activities, which were established by in vivo and in vitro experiments. A survey of the literature based on the phytochemical profile and health-promoting effects of ASLs showed that they can be used as potential ingredients for the development of pharmaceutical drugs and functional foods. Although there are sufficient findings available from in vitro and in vivo investigations, clinical trials are still needed to determine the exact effects of ASL extracts on human health.


1979 ◽  
Vol 19 (4) ◽  
pp. 209-213
Author(s):  
G. Nattero ◽  
J. Franzone ◽  
F. Croce ◽  
D. Bisbocci ◽  
E. Genazzani
Keyword(s):  

1987 ◽  
Vol 31 (sa) ◽  
pp. 203-208 ◽  
Author(s):  
T. G. Clark ◽  
H. W. Dickerson ◽  
J. B. Gratzek ◽  
R. C. Findly

1988 ◽  
Vol 30 (1-6) ◽  
pp. 457-460 ◽  
Author(s):  
Chantal Dauphin-Villemant ◽  
François Leboulenger ◽  
Françoise Xavier ◽  
Hubert Vaudry

1995 ◽  
Vol 59 (3) ◽  
pp. 242-246 ◽  
Author(s):  
K Vickery ◽  
A Pajkos ◽  
Y Cossart

Steroids ◽  
1975 ◽  
Vol 25 (3) ◽  
pp. 379-386 ◽  
Author(s):  
E. Nieschlag ◽  
W. Tekook ◽  
K.H. Usadel ◽  
H.K. Kley ◽  
H.L. Krüskemper

Sign in / Sign up

Export Citation Format

Share Document