scholarly journals Mining stochastic cellular automata to solve density classification task in two dimensions

DYNA ◽  
2020 ◽  
Vol 87 (215) ◽  
pp. 39-46
Author(s):  
Nestor Diaz ◽  
Irene Tischer

Density Classification Task (DCT) is a well-known problem that researchers have been tackling for more than two decades, where the main goal is to build a cellular automaton whose local rule gives rise to emergent global coordination. We describe the methods used to identify new cellular automata that solve this problem. The design of our cellular automata was carried out by a parallel genetic algorithm, specifically instantiated for this task. Our approach identifies both the neighborhood and its stochastic rule using a dataset of initial configurations that covers in a predefined and balanced way the full range of densities in DCT. We compare our results with some models currently available in the field. In some cases, our models show better performance than the best solution reported in the literature, with efficacy of 0.842 for datasets with uniform distribution around the critical density. The best-known cellular automaton achieves 0.832 in the same datasets. Tests are carried out in datasets of diverse lattice sizes and sampling conditions; we focused the analysis on the performance of our model around critical densities. Finally, by a statistical non-parametric test, we demonstrate that there are no significant differences between our identified cellular automata and the best-known model.

1991 ◽  
Vol 248 ◽  
Author(s):  
M. A. Smith ◽  
Y. Bar-Yam ◽  
Y. Rabin ◽  
N. Margolus ◽  
T. Toffoli ◽  
...  

AbstractIn order to improve our ability to simulate the complex behavior of polymers, we introduce dynamical models in the class of Cellular Automata (CA). Space partitioning methods enable us to overcome fundamental obstacles to large scale simulation of connected chains with excluded volume by parallel processing computers. A highly efficient, two-space algorithm is devised and tested on both Cellular Automata Machines (CAMs) and serial computers. Preliminary results on the static and dynamic properties of polymers in two dimensions are reported.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Mauricio Verardo ◽  
Pedro P. B. de Oliveira

Cellular automata are fully discrete, computational, or dynamical systems, characterised by a local, totally decentralised action. Although extremely simple in structure, they are able to represent arbitrarily complex phenomena. However, due to the very big number of rules in any nontrivial space, finding a local rule that globally unfolds as desired remains a challenging task. In order to help along this direction, here we present the current state of cellular automata templates, a data structure that allows for the representation of sets of cellular automata in a compact manner. The template data structure is defined, along with processes by which interesting templates can be built. In the end, we give an illustrative example showcasing how templates can be used to explore a very large cellular automaton space. Although the idea itself of template has been introduced before, only now its conceptual underpinnings and computational robustness rendered the notion effective for practical use.


2020 ◽  
Vol 29 (4) ◽  
pp. 741-757
Author(s):  
Kateryna Hazdiuk ◽  
◽  
Volodymyr Zhikharevich ◽  
Serhiy Ostapov ◽  
◽  
...  

This paper deals with the issue of model construction of the self-regeneration and self-replication processes using movable cellular automata (MCAs). The rules of cellular automaton (CA) interactions are found according to the concept of equilibrium neighborhood. The method is implemented by establishing these rules between different types of cellular automata (CAs). Several models for two- and three-dimensional cases are described, which depict both stable and unstable structures. As a result, computer models imitating such natural phenomena as self-replication and self-regeneration are obtained and graphically presented.


1993 ◽  
Vol 03 (02) ◽  
pp. 293-321 ◽  
Author(s):  
JÜRGEN WEITKÄMPER

Real cellular automata (RCA) are time-discrete dynamical systems on ℝN. Like cellular automata they can be obtained from discretizing partial differential equations. Due to their structure RCA are ideally suited to implementation on parallel computers with a large number of processors. In a way similar to the Hénon mapping, the system we consider here embeds the logistic mapping in a system on ℝN, N>1. But in contrast to the Hénon system an RCA in general is not invertible. We present some results about the bifurcation structure of such systems, mostly restricting ourselves, due to the complexity of the problem, to the two-dimensional case. Among others we observe cascades of cusp bifurcations forming generalized crossroad areas and crossroad areas with the flip curves replaced by Hopf bifurcation curves.


2008 ◽  
Vol 8 (10) ◽  
pp. 977-985
Author(s):  
Z.-Y. Xu ◽  
M. Feng ◽  
W.-M. Zhang

We investigate the possibility to have electron-pairs in decoherence-free subspace (DFS), by means of the quantum-dot cellular automata (QCA) and single-spin rotations, to deterministically carry out a universal quantum computation with high-fidelity. We show that our QCA device with electrons tunneling in two dimensions is very suitable for DFS encoding, and argue that our design favors a scalable quantum computation robust to collective dephasing errors.


2004 ◽  
Vol 120 ◽  
pp. 225-230
Author(s):  
P. Mukhopadhyay ◽  
M. Loeck ◽  
G. Gottstein

A more refined 3D cellular Automata (CA) algorithm has been developed which has increased the resolution of the space and reduced the computation time and can take care of the complexity of recrystallization process through physically based solutions. This model includes recovery, condition for nucleation and orientation dependent variable nuclei growth as a process of primary static recrystallization. Incorporation of microchemistry effects makes this model suitable for simulating recrystallization behaviour in terms of texture, kinetics and microstructure of different alloys. The model is flexible to couple up with other simulation programs on a common database.


Sign in / Sign up

Export Citation Format

Share Document