scholarly journals Full Model Selection Problem and Pipelines for Time-Series Databases: Contrasting Population-Based and Single-point Search Metaheuristics

2021 ◽  
Vol 41 (3) ◽  
pp. e79308
Author(s):  
Nancy Pérez-Castro ◽  
Héctor Gabriel Acosta-Mesa ◽  
Efrén Mezura-Montes ◽  
Nicandro Cruz-Ramírez

The increasing production of temporal data, especially time series, has motivated valuable knowledge to understand phenomena or for decision-making. As the availability of algorithms to process data increases, the problem of choosing the most suitable one becomes more prevalent. This problem is known as the Full Model Selection (FMS), which consists of finding an appropriate set of methods and hyperparameter optimization to perform a set of structured tasks as a pipeline. Multiple approaches (based on metaheuristics) have been proposed to address this problem, in which automated pipelines are built for multitasking without much dependence on user knowledge. Most of these approaches propose pipelines to process non-temporal data. Motivated by this, this paper proposes an architecture for finding optimized pipelines for time-series tasks. A micro-differential evolution algorithm (µ-DE, population-based metaheuristic) with different variants and continuous encoding is compared against a local search (LS, single-point search) with binary and mixed encoding. Multiple experiments are carried out to analyze the performance of each approach in ten time-series databases. The final results suggest that the µ-DE approach with rand/1/bin variant is useful to find competitive pipelines without sacrificing performance, whereas a local search with binary encoding achieves the lowest misclassification error rates but has the highest computational cost during the training stage.

Author(s):  
Nancy Perez-Castro ◽  
Aldo Marquez-Grajales ◽  
Hector Gabriel Acosta-Mesa ◽  
Efren Mezura-Montes

Author(s):  
Olympia Roeva ◽  
Tsonyo Slavov ◽  
Stefka Fidanova

This chapter presents a comparison of population-based (e.g. Genetic Algorithms (GA), Firefly Algorithm (FA), and Ant Colony Optimization (ACO))and single point search meta-heuristic methods (e.g. Simulated Annealing (SA), Threshold Accepting (TA), and Tabu Search (TS)) applied to an optimal tuning of a universal digital proportional-integral-derivative (PID) controller. The PID controllers control feed rate and maintain glucose concentration at the desired set point for an E. coli MC4110 fed-batch cultivation process. The model of the cultivation process is represented by dynamic non-linear mass balance equations for biomass and substrate. In the control the design measurement, process noise, and time delay of the glucose measurement system were taken into account. To achieve good closed-loop system the constants (Kp, Ti, Td, b, c and N) were tuned in the PID controller algorithm so the controller can provide control action designed for the specific process requirements resulting in an optimal set of PID controller settings. For a time the controllers set and maintained the control variable at the desired set point during the E. coli MC4110 fed-batch cultivation process. Average, best, and worst objective function values and PID controller's parameters were used as criteria to compare the performance of the considered meta-heuristic algorithms. This indicates that the population-based meta-heuristics performs better than the single point search methods. GA and ACO show better performance than FA. It also indicates that TS results are comparable to those of FA. The results show that SA and TA algorithms failed to solve the PID controller tuning problem.


2018 ◽  
Vol 40 ◽  
pp. 34-44 ◽  
Author(s):  
Mingquan Wu ◽  
Wenjiang Huang ◽  
Zheng Niu ◽  
Changyao Wang ◽  
Wang Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document