scholarly journals Low Dissolved Oxygen in an Estuarine Channel (San Joaquin River, California): Mechanisms and Models Based on Long-Term Time Series

Author(s):  
Alan D. Jassby ◽  
◽  
Erwin E. Van Nieuwenhuyse
2001 ◽  
Vol 6 (1) ◽  
pp. 105-131 ◽  
Author(s):  
Gaudenta

We consider a dissolved oxygen balance model for Neris, which includes biochemical oxygen demand, nitrification, sedimentation, algae respiration and photosynthesis. The load from point sources, tributaries and distributed sources are taken into account. Long-term systematic components such as drift and seasonal components are analysed by applying time series analysis. The model is adapted according to the State Environmental Monitoring, and source data of controlled pollution covering the period 1978-1998.


2016 ◽  
Vol 9 (1) ◽  
pp. 53-62 ◽  
Author(s):  
R. D. García ◽  
O. E. García ◽  
E. Cuevas ◽  
V. E. Cachorro ◽  
A. Barreto ◽  
...  

Abstract. This paper presents the reconstruction of a 73-year time series of the aerosol optical depth (AOD) at 500 nm at the subtropical high-mountain Izaña Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain). For this purpose, we have combined AOD estimates from artificial neural networks (ANNs) from 1941 to 2001 and AOD measurements directly obtained with a Precision Filter Radiometer (PFR) between 2003 and 2013. The analysis is limited to summer months (July–August–September), when the largest aerosol load is observed at IZO (Saharan mineral dust particles). The ANN AOD time series has been comprehensively validated against coincident AOD measurements performed with a solar spectrometer Mark-I (1984–2009) and AERONET (AErosol RObotic NETwork) CIMEL photometers (2004–2009) at IZO, obtaining a rather good agreement on a daily basis: Pearson coefficient, R, of 0.97 between AERONET and ANN AOD, and 0.93 between Mark-I and ANN AOD estimates. In addition, we have analysed the long-term consistency between ANN AOD time series and long-term meteorological records identifying Saharan mineral dust events at IZO (synoptical observations and local wind records). Both analyses provide consistent results, with correlations  >  85 %. Therefore, we can conclude that the reconstructed AOD time series captures well the AOD variations and dust-laden Saharan air mass outbreaks on short-term and long-term timescales and, thus, it is suitable to be used in climate analysis.


Sign in / Sign up

Export Citation Format

Share Document