scholarly journals The Effects of dual task (fine motor precision + cognitive charge) on proprioception

2020 ◽  
Vol 5 (1) ◽  
pp. 79-86
Author(s):  
Liudmila Liutsko ◽  
Jose Maria Tous ◽  
Sergi Segura

The aim of the given preliminary study was to check whether any changes in fi ne motor behaviour exist in switching from single to double task (with cognition charge) in proprioceptive sensory graphomotor test conditions. Ten students (fi ve males and fi ve females), aged from 20 to 30 years old, took part in the experiment - precision of tracking of the models in both experimental test conditions: without and with cognitive task (counting numbers back). The variables for assessment were obtained with use of the digitalized proprioceptive diagnostics (Tous, 2008; Tous, J.M., Muiños, Tous, O., & Tous J, 2012) of Mira y Lopez laboratory (University of Barcelona) that transformed the measurements of drawn lines on a touch screen from pixels into millimetres. As results showed, in the proprioceptive test condition, the changes in deviations related to spatial (lineograms) or line length variability (parallels) did not reach any statistical signifi cance; while the changes in line length performance (lineograms) were found signifi cant (that corresponds to inhibition- -excitatory balance of nervous system).

2020 ◽  
Vol 10 (1) ◽  
pp. 36
Author(s):  
Liudmila Liutsko ◽  
Ruben Muiños ◽  
Josep Maria Tous Ral ◽  
María José Contreras

Previous studies have reported certain sex differences in motor performance precision. The aim of the present study was to analyze sex differences in fine motor precision performance for both hands under different test conditions. Fine motor tasks were performed by 220 Spanish participants (ages: 12–95), tracing over the provided models – lines of 40 mm for both hands, two sensory conditions (PV—proprioceptive-visual; P—proprioceptive only) and three movement types (F—frontal, T—transversal, and S—sagittal). Differences in line length (the task focused on precision) were observed through MANOVA analysis for all test conditions, both sexes and different age groups. Sex differences in precision were observed in F and T movement types (statistically significance level and higher Cohens’ d were observed in condition with vision). No statistically significant differences were observed for both hands and sensory conditions in sagittal movement. Sex differences in fine motor precision were more frequently observed in the PV sensory condition in frontal movement and less in sagittal movement.


Author(s):  
Rainer Beurskens ◽  
Dennis Brueckner ◽  
Hagen Voigt ◽  
Thomas Muehlbauer

AbstractThe concurrent execution of two or more tasks simultaneously results in performance decrements in one or both conducted tasks. The practice of dual-task (DT) situations has been shown to decrease performance decrements. The purpose of this study was to investigate the effects of consecutive versus concurrent practice on cognitive and motor task performance under single-task (ST) and DT conditions. Forty-five young adults (21 females, 24 males) were randomly assigned to either a consecutive practice (INT consecutive) group, a concurrent practice (INT concurrent) group or a control (CON) group (i.e., no practice). Both INT groups performed 2 days of acquisition, i.e., practicing a cognitive and a motor task either consecutively or concurrently. The cognitive task required participants to perform an auditory stroop task and the number of correct responses was used as outcome measure. In the motor task, participants were asked to stand on a stabilometer and to keep the platform as close to horizontal as possible. The time in balance was calculated for further analysis. Pre- and post-practice testing included performance assessment under ST (i.e., cognitive task only, motor task only) and DT (i.e., cognitive and motor task simultaneously) test conditions. Pre-practice testing revealed no significant group differences under ST and DT test conditions neither for the cognitive nor the motor task measure. During acquisition, both INT groups improved their cognitive and motor task performance. The post-practice testing showed significantly better cognitive and motor task values under ST and DT test conditions for the two INT groups compared to the CON group. Further comparisons between the two INT groups revealed better motor but not cognitive task values in favor of the INT consecutive practice group (ST: p = 0.022; DT: p = 0.002). We conclude that consecutive and concurrent practice resulted in better cognitive (ST condition) and motor (ST and DT test conditions) task performance than no practice. In addition, consecutive practice resulted in superior motor task performance (ST and DT test conditions) compared to concurrent practice and is, therefore, recommended when executing DT practice schedules.


2004 ◽  
Vol 63 (3) ◽  
pp. 143-149 ◽  
Author(s):  
Fred W. Mast ◽  
Charles M. Oman

The role of top-down processing on the horizontal-vertical line length illusion was examined by means of an ambiguous room with dual visual verticals. In one of the test conditions, the subjects were cued to one of the two verticals and were instructed to cognitively reassign the apparent vertical to the cued orientation. When they have mentally adjusted their perception, two lines in a plus sign configuration appeared and the subjects had to evaluate which line was longer. The results showed that the line length appeared longer when it was aligned with the direction of the vertical currently perceived by the subject. This study provides a demonstration that top-down processing influences lower level visual processing mechanisms. In another test condition, the subjects had all perceptual cues available and the influence was even stronger.


2021 ◽  
pp. 108438
Author(s):  
Daniel LaBrier ◽  
Ben Lilley ◽  
Anton Higgins ◽  
Ryan Stewart ◽  
Todd Palmer ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Magdalena Hagner-Derengowska ◽  
Krystian Kałużny ◽  
Wojciech Hagner ◽  
Anna Kałużna ◽  
Bartosz Kochański ◽  
...  

Introduction. The paper aims to evaluate the influence of two different demanding cognitive tasks on gait parameters using BTS SMART system analysis.Patients and Methods. The study comprised 53 postmenopausal women aged 64.5 ± 6.7 years (range: 47–79). For every subject, gait analysis using a BTS SMART system was performed in a dual-task study design under three conditions: (I) while walking only (single task), (II) walking while performing a simultaneous simple cognitive task (SCT) (dual task), and (III) walking while performing a simultaneous complex cognitive task (CCT) (dual task). Time-space parameters of gait pertaining to the length of a single support phase, double support phase, gait speed, step length, step width, and leg swing speed were analyzed.Results. Performance of cognitive tests during gait resulted in a statistically significant prolongation of the left (by 7%) and right (by 7%) foot gait cycle, shortening of the length of steps made with the right extremity (by 4%), reduction of speed of swings made with the left (by 11%) and right (by 8%) extremity, and reduction in gait speed (by 6%).Conclusions. Performance of cognitive tests during gait changes its individual pattern in relation to the level of the difficulty of the task.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4792
Author(s):  
Denisa Nohelova ◽  
Lucia Bizovska ◽  
Nicolas Vuillerme ◽  
Zdenek Svoboda

Nowadays, gait assessment in the real life environment is gaining more attention. Therefore, it is desirable to know how some factors, such as surfaces (natural, artificial) or dual-tasking, influence real life gait pattern. The aim of this study was to assess gait variability and gait complexity during single and dual-task walking on different surfaces in an outdoor environment. Twenty-nine healthy young adults aged 23.31 ± 2.26 years (18 females, 11 males) walked at their preferred walking speed on three different surfaces (asphalt, cobbles, grass) in single-task and in two dual-task conditions (manual task—carrying a cup filled with water, cognitive task—subtracting the number 7). A triaxial inertial sensor attached to the lower trunk was used to record trunk acceleration during gait. From 15 strides, sample entropy (SampEn) as an indicator of gait complexity and root mean square (RMS) as an indicator of gait variability were computed. The findings demonstrate that in an outdoor environment, the surfaces significantly impacted only gait variability, not complexity, and that the tasks affected both gait variability and complexity in young healthy adults.


2020 ◽  
Vol 39 (1) ◽  
pp. 567-575
Author(s):  
Deng Nanyang ◽  
Wang Haijun ◽  
Ling Haitao ◽  
Wang Jianjun

AbstractAn experimental test is carried out on the 70t converter in Masteel to study the law of middle period dephosphorization in the smelting period. It is found that the dephosphorization rate is slow in the early and middle period of smelting and the content of the final P in steel cannot reach the standard due to the low oxidation of slag. The content of the final P in steel can be controlled within 0.02% by adding ore to the molten bath in the middle period and raising the lance position. The experimental test shows that the dephosphorization can still be achieved by a large margin if appropriate slag conditions are maintained in the middle period when the C and O reactions are strong. By theoretical calculation, it is concluded that the slag content should be controlled between 15 and 23%, and the basicity of slag should be between 2.5 and 2.8 in the middle period of production. Through the observation of experimental slag by SEM, it is found that the limiting factor of dephosphorization in the middle period under the test conditions is that the dephosphorization speed is too slow due to the low oxidation, rather than the solidification of phosphorus.


2021 ◽  
Author(s):  
Penelope Pfeiffer ◽  
Joan R Coates ◽  
Andrew Kennedy ◽  
Kyleigh Getchell ◽  
Edina Kosa ◽  
...  

Blood-based biomarkers are much-needed diagnostic and prognostic tools for ALS. Canine degenerative myelopathy (DM) is recognized animal disease model to study the biology of human ALS. Serum derived exosomes are potential carrier that transport intercellular hormone-like messengers, together with their stability as carrier of proteins and RNA, make them ideal as biomarkers for a variety of diseases and biological processes. We study exosomal TDP-43 pattern as a surrogate biomarker that reflects biochemical changes in central nervous system. We isolated exosomes from canine serum using commercial exosome isolation reagents. TDP-43 and SOD1 profile in spinal cord homogenate lysate and that of serum-derived exosomes were found elevated in dogs with DM. We conclude levels of spinal cord TDP-43 and serum-derived exomes were similar in TDP-43 profiling, which warrant further investigation of disease sensitivity and specificity for establishing as a blood-based biomarker in canine DM.


Sign in / Sign up

Export Citation Format

Share Document