scholarly journals Cognitive and motor task performance under single- and dual-task conditions: effects of consecutive versus concurrent practice

Author(s):  
Rainer Beurskens ◽  
Dennis Brueckner ◽  
Hagen Voigt ◽  
Thomas Muehlbauer

AbstractThe concurrent execution of two or more tasks simultaneously results in performance decrements in one or both conducted tasks. The practice of dual-task (DT) situations has been shown to decrease performance decrements. The purpose of this study was to investigate the effects of consecutive versus concurrent practice on cognitive and motor task performance under single-task (ST) and DT conditions. Forty-five young adults (21 females, 24 males) were randomly assigned to either a consecutive practice (INT consecutive) group, a concurrent practice (INT concurrent) group or a control (CON) group (i.e., no practice). Both INT groups performed 2 days of acquisition, i.e., practicing a cognitive and a motor task either consecutively or concurrently. The cognitive task required participants to perform an auditory stroop task and the number of correct responses was used as outcome measure. In the motor task, participants were asked to stand on a stabilometer and to keep the platform as close to horizontal as possible. The time in balance was calculated for further analysis. Pre- and post-practice testing included performance assessment under ST (i.e., cognitive task only, motor task only) and DT (i.e., cognitive and motor task simultaneously) test conditions. Pre-practice testing revealed no significant group differences under ST and DT test conditions neither for the cognitive nor the motor task measure. During acquisition, both INT groups improved their cognitive and motor task performance. The post-practice testing showed significantly better cognitive and motor task values under ST and DT test conditions for the two INT groups compared to the CON group. Further comparisons between the two INT groups revealed better motor but not cognitive task values in favor of the INT consecutive practice group (ST: p = 0.022; DT: p = 0.002). We conclude that consecutive and concurrent practice resulted in better cognitive (ST condition) and motor (ST and DT test conditions) task performance than no practice. In addition, consecutive practice resulted in superior motor task performance (ST and DT test conditions) compared to concurrent practice and is, therefore, recommended when executing DT practice schedules.

2019 ◽  
Vol 62 (7) ◽  
pp. 2099-2117 ◽  
Author(s):  
Jason A. Whitfield ◽  
Zoe Kriegel ◽  
Adam M. Fullenkamp ◽  
Daryush D. Mehta

Purpose Prior investigations suggest that simultaneous performance of more than 1 motor-oriented task may exacerbate speech motor deficits in individuals with Parkinson disease (PD). The purpose of the current investigation was to examine the extent to which performing a low-demand manual task affected the connected speech in individuals with and without PD. Method Individuals with PD and neurologically healthy controls performed speech tasks (reading and extemporaneous speech tasks) and an oscillatory manual task (a counterclockwise circle-drawing task) in isolation (single-task condition) and concurrently (dual-task condition). Results Relative to speech task performance, no changes in speech acoustics were observed for either group when the low-demand motor task was performed with the concurrent reading tasks. Speakers with PD exhibited a significant decrease in pause duration between the single-task (speech only) and dual-task conditions for the extemporaneous speech task, whereas control participants did not exhibit changes in any speech production variable between the single- and dual-task conditions. Conclusions Overall, there were little to no changes in speech production when a low-demand oscillatory motor task was performed with concurrent reading. For the extemporaneous task, however, individuals with PD exhibited significant changes when the speech and manual tasks were performed concurrently, a pattern that was not observed for control speakers. Supplemental Material https://doi.org/10.23641/asha.8637008


Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Hogene Kim ◽  
Hyunki Kim ◽  
Na Young Kim ◽  
Hyun Choi ◽  
Joonho Shin ◽  
...  

Background: This study investigated cognitive-motor interference effects after a chronic stroke diagnosis. Methods: Ten stroke patients (54.7±12.3 yrs.) and seven age-matched controls (58.4±10.6 yrs.) took part in a series of cognitive-motor tasks. Under single-motor task conditions, participants moved a cursor of the robot arm along the annulus using unaffected hand ( Circle task), or performed a center-out movement in four directions ( Cross task). Under single-cognitive task conditions, participants performed the Serial 7 (S7 task) or the Controlled Oral Word Association Test (COWAT task). Under dual-task conditions, participants performed a motor task and a cognitive task simultaneously. The movement accuracy, defined as the percent of movement trajectories within the annulus per total movement trajectories, were measured on motor tasks, and the number of correct answers were recorded on cognitive tasks. Results: Results of two-sample t statistic showed that the movement accuracy of the stroke group was lower than that of the control group, in particular under single-motor conditions (Circle: stroke 84.9±11.2% vs control 93.1±5.1%, p=0.094; Cross: stroke 77.2±13.2% vs control 88.6±8.2%, p=0.062). No significant difference was found between the control and stroke groups under single-cognitive task conditions. The control group showed no significant changes in the number of correct answers and movement accuracies between single and dual tasks. On the other hand, the stroke group showed significantly decreased movement accuracy for the Cross task compared to the Circle task (p=0.006). The stroke group’s number of correct answers in the S7 task were significantly decreased when S7 was performed together with the Cross task (10.0±5.3 vs 8.1±4.5, p=0.008). Their movement accuracy was also significantly reduced under dual-task conditions (single 77.2±13.2%, dual (COWAT+Cross) 74.6±12.4, p=0.034). Conclusions: This study confirmed that cognitive-motor interference is evident for stroke patients when they performed a cognitive task and a motor task simultaneously, such that performance in one or both of the dual tasks is worse as compared to that of each single task.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kuem Ju Lee ◽  
Gyulee Park ◽  
Joon-Ho Shin

Background: Cognitive–motor interference is a phenomenon in which the concomitant performance of cognitive and motor tasks results in poorer performance than the isolated performance of these tasks. We aimed to evaluate changes in dual-task performance after robotic upper extremity rehabilitation in patients with stroke-induced hemiplegia.Methods: This prospective study included patients with left upper limb weakness secondary to middle cerebral artery stroke who visited a rehabilitation hospital. Participants performed a total of 640 robot-assisted planar reaching movements during a therapist-supervised robotic intervention that was conducted five times a week for 4 weeks. Cognitive and motor performance was separately evaluated in single- and dual-task conditions. The digit span test and Controlled Oral Word Association Test (COWAT) were used to assess cognitive performance, whereas motor performance was evaluated through kinematic assessment of the motor task.Results: In single-task conditions, motor performance showed significant improvement after robotic rehabilitation, as did the scores of the COWAT subdomains of animal naming (p < 0.001), supermarket item naming (p < 0.06), and phonemes (p < 0.05). In dual-task conditions, all motor task performance variables except mean velocity showed improvement after robotic rehabilitation. The type of cognitive task did not affect the dual-task effect, and there were no significant differences in the dual-task effects of motor, cognitive, or the sum of motor and cognitive performance after robotic rehabilitation.Conclusion: Post-stroke robotic rehabilitation has different effects on motor and cognitive function, with more consistent effects on motor function than on cognitive function. Although motor and cognitive performance improved after robotic rehabilitation, there were no changes in the corresponding dual-task effects.


2019 ◽  
Vol 33 (8) ◽  
pp. 623-634 ◽  
Author(s):  
Renee Veldkamp ◽  
Anders Romberg ◽  
Paivi Hämäläinen ◽  
Xavier Giffroy ◽  
Lousin Moumdjian ◽  
...  

Background. Simultaneous execution of motor and cognitive tasks can result in worsened performance on one or both tasks, indicating cognitive-motor interference (CMI). A growing amount of research on CMI in persons with multiple sclerosis (pwMS) is observed. However, psychometric properties of dual-task outcomes have been scarcely reported. Objective. To investigate the between-day test-retest reliability of the motor and cognitive dual-task costs (DTCs) during multiple CMI test conditions with various task complexities in pwMS and matched healthy controls (HCs). Methods. A total of 34 pwMS (Expanded Disability Status Scale score 3.0 ± 0.8) and 31 HCs were tested and retested on 3 single cognitive, 4 single motor, and 12 cognitive-motor dual tasks. Cognitive tasks included serial subtraction by 7, titrated digit span backward, and auditory vigilance. Motor tasks were walking at self-selected speed, over obstacles, crisscross, and while carrying a water-filled cup. Outcome measures were cognitive and motor DTC, calculated as percentage change of dual-task performance compared with single-task performance. Intraclass correlations (ICCs) and Spearman correlation coefficients were calculated as appropriate. Results. For DTCmotor of gait speed, ICCs ranged from 0.45 to 0.81 and Spearman correlations from 0.74 to 0.82. For DTCcognitive, ICCs ranged from −0.18 to 0.49 and Spearman correlations from −0.28 to 0.26. Reliability depended on the type of motor and cognitive task. Conclusion. Reliability of the DTCmotor was, overall, good, whereas that of the DTCcognitive was poor. The “walking” and “cup” dual-task conditions were the most reliable regardless of the integrated cognitive task.


Neurology ◽  
2018 ◽  
Vol 91 (23 Supplement 1) ◽  
pp. S6.1-S6 ◽  
Author(s):  
Meng Ni ◽  
Joseph Hazzard ◽  
Pamela Smith

BackgroundDual-task, performing a balance task and a cognitive task simultaneously, has been used as sport-related concussion assessment tool. However, the effect of dual task on balance performance remains controversial. Also, the fluctuation of hormone across menstrual cycle on balance and dual-task performance has not been fully examined.ObjectiveTo examine (1) the effect of dual task on balance performance, (2) the interaction of female sex hormonal level, balance, and dual-task performance.DesignA cohort study.SettingA laboratory of concussion research and services.ParticipantsA group of 49 healthy female college-aged students (age = 21.6 ± 2.0 years).Main outcome measuresThe Stability Evaluation Test (SET) protocol, Balance error scoring system (BESS) test and postural sway velocity (deg/sec) by using VSR SPORT force plate. Three auditory mathematics questions were given for each condition of the SET test. Two single-task conditions were provided, including balance only and math only. Balance test and math questions were given simultaneously during the dual-task condition.ResultsThere was no significantly statistically difference in BESS or sway velocity between single and dual task. However, the performance of math calculation is better in dual-task comparing to the single task (math only), with an 8%–12% higher rate of accuracy, but it didn't reach a statistical significance. The rate of accuracy during the dual task didn't vary among menstrual phases.ConclusionsBalance performance was maintained under dual-task conditions and fluctuation of female sex hormones across the menstrual cycle may not affect working memory and executive function. These findings are potentially clinically applicable to detecting balance deficits and cognitive alterations in female concussed individuals. Future studies are needed to investigate the underlying mechanism of balance maintenance and attention dividend under dual-task conditions.


1992 ◽  
Vol 36 (18) ◽  
pp. 1398-1402
Author(s):  
Pamela S. Tsang ◽  
Tonya L. Shaner

The secondary task technique was used to test two alternative explanations of dual task decrement: outcome conflict and resource allocation. Subjects time-shared a continuous tracking task and a discrete Sternberg memory task. The memory probes were presented under three temporal predictability conditions. Dual task performance decrements in both the tracking and memory tasks suggested that the two tasks competed for some common resources, processes, or mechanisms. Although performance decrements were consistent with both the outcome conflict and resource allocation explanations, the two explanations propose different mechanisms by which the primary task could be protected from interference from the concurrent secondary task. The primary task performance could be protected by resource allocation or by strategic sequencing of the processing of the two tasks in order to avoid outcome conflict. In addition to examining the global trial means, moment-by-moment tracking error time-locked to the memory probe was also analyzed. There was little indication that the primary task was protected by resequencing of the processing of the two tasks. This together with the suggestion that predictable memory probes led to better protected primary task performance than less predictable memory probes lend support for the resource explanation.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6159
Author(s):  
Valeria Belluscio ◽  
Gabriele Casti ◽  
Marco Ferrari ◽  
Valentina Quaresima ◽  
Maria Sofia Sappia ◽  
...  

Increased oxygenated hemoglobin concentration of the prefrontal cortex (PFC) has been observed during linear walking, particularly when there is a high attention demand on the task, like in dual-task (DT) paradigms. Despite the knowledge that cognitive and motor demands depend on the complexity of the motor task, most studies have only focused on usual walking, while little is known for more challenging tasks, such as curved paths. To explore the relationship between cortical activation and gait biomechanics, 20 healthy young adults were asked to perform linear and curvilinear walking trajectories in single-task and DT conditions. PFC activation was assessed using functional near-infrared spectroscopy, while gait quality with four inertial measurement units. The Figure-of-8-Walk-Test was adopted as the curvilinear trajectory, with the “Serial 7s” test as concurrent cognitive task. Results show that walking along curvilinear trajectories in DT led to increased PFC activation and decreased motor performance. Under DT walking, the neural correlates of executive function and gait control tend to be modified in response to the cognitive resources imposed by the motor task. Being more representative of real-life situations, this approach to curved walking has the potential to reveal crucial information and to improve people’ s balance, safety, and life’s quality.


2019 ◽  
Author(s):  
Hamid Allahverdipour ◽  
Iman Dianat ◽  
Galavizh Mameh ◽  
mohammad Asghari Jafarabadi

Abstract Background: The aim of this study was to evaluate the effects of cognitive and physical loads on dynamic and static balance of older adults under single, dual and multi-task conditions. Methods: The effects of single versus combined (dual-task and multi-task) cognitive (to speak out the name of the weekdays in a reverse order) and physical (with three levels including handling weights of 1kg, 2kg and 3kg in each hand) loads on dynamic and static balance of 42 older adults (21 males and 21 females), aged ≥ 60 years were studied. Dynamic and static balance measures were evaluated using the Timed Up and Go (TUG) and stabilometer (sway index) tests, respectively. Results: The TUG speed of female participants was generally slower than that of male participants. Cognitive task influenced the participants’ dynamic balance during the dual-task conditions, while the static balance was not affected in this phase. The dynamic and static balance measures were more influenced when performing the multi-tasks than when doing the dual-tasks. The effects of various levels of physical demand on the dynamic balance varied greatly under dual- and multi-task conditions. Conclusions: The findings add to the understanding of the factors influencing the elderly balance and control under cognitive and physical functioning.


2018 ◽  
Vol 120 (1) ◽  
pp. 330-342
Author(s):  
Joshua Baker ◽  
Antonio Castro ◽  
Andrew K. Dunn ◽  
Suvobrata Mitra

Everyday cognitive tasks are frequently performed under dual-task conditions alongside continuous sensorimotor coordinations (CSCs) such as driving, walking, or balancing. Observed interference in these dual-task settings is commonly attributed to demands on executive function or attentional resources, but the time course and reciprocity of interference are not well understood at the level of information-processing components. Here we used electrophysiology to study the detailed chronometry of dual-task interference between a visual oddball task and a continuous visuomanual tracking task. The oddball task’s electrophysiological components were linked to underlying cognitive processes, and the tracking task served as a proxy for the continuous cycle of state monitoring and adjustment inherent to CSCs. Dual-tasking interfered with the oddball task’s accuracy and attentional processes (attenuated P2 and P3b magnitude and parietal alpha-band event-related desynchronization), but errors in tracking due to dual-tasking accrued at a later timescale and only in trials in which the target stimulus appeared and its tally had to be incremented. Interference between cognitive tasks and CSCs can be asymmetric in terms of timing as well as affected information-processing components. NEW & NOTEWORTHY Interference between cognitive tasks and continuous sensorimotor coordination (CSC) has been widely reported, but this is the first demonstration that the cognitive operation that is impaired by concurrent CSC may not be the one that impairs the CSC. Also demonstrated is that interference between such tasks can be temporally asymmetric. The asynchronicity of this interference has significant implications for understanding and mitigating loss of mobility in old age, and for rehabilitation for neurological impairments.


Sign in / Sign up

Export Citation Format

Share Document