Wettability Alteration and Improved Oil Recovery in Unconventional Resources

Author(s):  
Fabio Bordeaux Rego ◽  
Esmail Eltahan ◽  
Kamy Sepehrnoori
2021 ◽  
Author(s):  
Luky Hendraningrat ◽  
Saeed Majidaie ◽  
Nor Idah Ketchut ◽  
Fraser Skoreyko ◽  
Seyed Mousa MousaviMirkalaei

Abstract The potential of nanoparticles, which are classified as advanced fluid material, have been unlocked for improved oil recovery in recent years such as nanoparticles-assisted waterflood process. However, there is no existing commercial reservoir simulation software that could properly model phase behaviour and transport phenomena of nanoparticles. This paper focuses on the development of a novel robust advanced simulation algorithms for nanoparticles that incorporate all the main mechanisms that have been observed for interpreting and predicting performance. The general algorithms were developed by incorporating important physico-chemical interactions that exist across nanoparticles along with the porous media and fluid: phase behaviour and flow characteristic of nanoparticles that includes aggregation, splitting and solid phase deposition. A new reaction stoichiometry was introduced to capture the aggregation process. The new algorithm was also incorporated to describe disproportionate permeability alteration and adsorption of nanoparticles, aqueous phase viscosities effect, interfacial tension reduction, and rock wettability alteration. Then, the model was tested and duly validated using several previously published experimental datasets that involved various types of nanoparticles, different chemical additives, hardness of water, wide range of water salinity and rock permeability and oil viscosity from ambient to reservoir temperature. A novel advanced simulation tool has successfully been developed to model advanced fluid material, particularly nanoparticles for improved/enhanced oil recovery. The main scripting of physics and mechanisms of nanoparticle injection are accomplished in the model and have acceptable match with various type of nanoparticles, concentration, initial wettability, solvent, stabilizer, water hardness and temperature. Reasonable matching for all experimental published data were achieved for pressure and production data. Critical parameters have been observed and should be considered as important input for laboratory experimental design. Sensitivity studies have been conducted on critical parameters and reported in the paper as the most sensitive for obtaining the matches of both pressure and production data. Observed matching parameters could be used as benchmarks for training and data validation. Prior to using in a 3D field-scale prediction in Malaysian oilfields, upscaling workflows must be established with critical parameters. For instance, some reaction rates at field-scale can be assumed to be instantaneous since the time scale for field-scale models is much larger than these reaction rates in the laboratory.


2010 ◽  
Author(s):  
Adeel Zahid ◽  
Erling Halfdan Stenby ◽  
Alexander A. Shapiro

2006 ◽  
Vol 20 (5) ◽  
pp. 2056-2062 ◽  
Author(s):  
Peimao Zhang ◽  
Medad T. Tweheyo ◽  
Tor Austad

2021 ◽  
Author(s):  
Mingyuan Wang ◽  
Gayan A. Abeykoon ◽  
Francisco J. Argüelles-Vivas ◽  
Ryosuke Okuno

Abstract This paper presents an experimental study of improved oil recovery from fractured shale cores by huff-n-puff of the aqueous solutions of 3-pentanone. The huff-n-puff experiments with different 3-pentanone concentrations were analyzed by the material balance for components: oil, brine, and 3-pentanone. Naturally sulfate-rich brine of low salinity was used as the injection brine. Results show that the 3-pentanone solution recovered more oil from the shale matrix than the injection brine alone. The oil recovery increased when the 3-pentanone concentration increased from 0.56-wt% to 2.85-wt%. Huff-n-puff with the 2.85-wt% 3-pentanone solution showed the highest improved oil recovery by 3-pentanone. However, the huff-n-puff experiment with the 1.07-wt% 3-pentanone solution showed the highest efficiency measured by the mass ratio of the produced oil to the injected 3-pentanone. That is, an optimal concentration of 3-pentanone appeared to exist. The material balance analysis showed that 3-pentanone was efficiently imbibed into the shale matrix, and that oil was recovered from shale mainly by the displacement by brine after the wettability alteration by 3-pentanone.


Author(s):  
Abdulmecit Araz ◽  
Farad Kamyabi

A new generation improved oil recovery methods comes from combining techniques to make the overall process of oil recovery more efficient. One of the most promising methods is combined Low Salinity Surfactant (LSS) flooding. Low salinity brine injection has proven by numerous laboratory core flood experiments to give a moderate increase in oil recovery. Current research shows that this method may be further enhanced by introduction of surfactants optimized for lowsal environment by reducing the interfacial tension. Researchers have suggested different mechanisms in the literature such as pH variation, fines migration, multi-component ionic exchange, interfacial tension reduction and wettability alteration for improved oil recovery during lowsal injection. In this study, surfactant solubility in lowsal brine was examined by bottle test experiments. A series of core displacement experiments was conducted on nine crude oil aged Berea core plugs that were designed to determine the impact of brine composition, wettability alteration, Low Salinity Water (LSW) and LSS flooding on Enhancing Oil Recovery (EOR). Laboratory core flooding experiments were conducted on the samples in a heating cabinet at 60 °C using five different brine compositions with different concentrations of NaCl, CaCl2 and MgCl2. The samples were first reached to initial water saturation, Swi, by injecting connate water (high salinity water). LSW injection followed by LSS flooding performed on the samples to obtain the irreducible oil saturation. The results showed a significant potential of oil recovery with maximum additional recovery of 7% Original Oil in Place (OOIP) by injection of LS water (10% LS brine and 90% distilled water) into water-wet cores compared to high salinity waterflooding. It is also concluded that oil recovery increases as wettability changes from water-wet to neutral-wet regardless of the salinity compositions. A reduction in residual oil saturation, Sor, by 1.1–4.8% occurred for various brine compositions after LSS flooding in tertiary recovery mode. The absence of clay swelling and fine migration has been confirmed by the stable differential pressure recorded for both LSW and LSS flooding. Aging the samples at high temperature prevented the problem of fines production. Combined LSS flooding resulted in an additional oil recovery of 9.2% OOIP when applied after LSW flooding. Surfactants improved the oil recovery by reducing the oil-water interfacial tension. In addition, lowsal environment decreased the surfactant retention, thus led to successful LSS flooding. The results showed that combined LSS flooding may be one of the most promising methods in EOR. This hybrid improved oil recovery method is economically more attractive and feasible compared to separate low salinity waterflooding or surfactant flooding.


2019 ◽  
Vol 2 (2) ◽  
pp. 7-8
Author(s):  
Madison Barth ◽  
Japan Trivedi ◽  
Benedicta Nwani ◽  
Yosamin Esanullah

Of recent, there has been research and development in the technologies/techniques required to meet the ever-growing energy demand in the world. Oil is a major source of energy which is contained in over 50% of carbonate reservoirs. The oil/mixed wettability of carbonate rocks makes it technically challenging to recover the needed oil. The process of crude oil recovery has three different stages primary, secondary and tertiary recovery. Tertiary recovery is also known as enhanced oil recovery or EOR. EOR includes the use of surfactants to reduce the interfacial tension between a hydrocarbon and brine, thus suspending them both in a microemulsion. Surfactant performance can be affected by multiple variables, including brine salinity, surfactant concentration, and type of hydrocarbon. A petroleum engineer must take all variables into consideration when selecting a surfactant to make sure that its efficiency is as high as possible, especially because the use of surfactants is costly.  In this work, a chembetaine zwitter ionic surfactant of two different concentrations are evaluated at various synthetic formation brine salinities for their favourable wettability alteration and interfacial tension reduction in oil-wet carbonate- Silurian Dolomite. For the evaluation, fluid-fluid and rock-fluid analysis are carried out to select the optimal surfactant concentration and brine salinity with the greatest improved oil recovery potential.  Results are indicative that the surfactant at the two concentrations studied is compatible at the ranges of salinities evaluated. However, from the fluid-fluid analysis, there was no ultra-low interfacial tension that is needed for oil mobilization. More so, the rock-fluid analysis shows that the surfactant is not able to alter the wettability of oil-wet rocks favourably. The optimal surfactant slug for the greatest oil recovery, in this case, would be expected at 0.5% surfactant concentration in 10,000 ppm synthetic formation brine salinity. This study, therefore, serves as a guide for the design of optimal surfactant slug in oil-wet carbonate cores requires to reduce non-productive time, prevent reservoir damage and therefore improve recovery.


Sign in / Sign up

Export Citation Format

Share Document