Wettability alteration and improved oil recovery by spontaneous imbibition of seawater into chalk: Impact of the potential determining ions Ca2+, Mg2+, and SO42−

Author(s):  
Peimao Zhang ◽  
Medad T. Tweheyo ◽  
Tor Austad
2021 ◽  
Author(s):  
Xu-Guang Song ◽  
Ming-Wei Zhao ◽  
Cai-Li Dai ◽  
Xin-Ke Wang ◽  
Wen-Jiao Lv

AbstractThe ultra-low permeability reservoir is regarded as an important energy source for oil and gas resource development and is attracting more and more attention. In this work, the active silica nanofluids were prepared by modified active silica nanoparticles and surfactant BSSB-12. The dispersion stability tests showed that the hydraulic radius of nanofluids was 58.59 nm and the zeta potential was − 48.39 mV. The active nanofluids can simultaneously regulate liquid–liquid interface and solid–liquid interface. The nanofluids can reduce the oil/water interfacial tension (IFT) from 23.5 to 6.7 mN/m, and the oil/water/solid contact angle was altered from 42° to 145°. The spontaneous imbibition tests showed that the oil recovery of 0.1 wt% active nanofluids was 20.5% and 8.5% higher than that of 3 wt% NaCl solution and 0.1 wt% BSSB-12 solution. Finally, the effects of nanofluids on dynamic contact angle, dynamic interfacial tension and moduli were studied from the adsorption behavior of nanofluids at solid–liquid and liquid–liquid interface. The oil detaching and transporting are completed by synergistic effect of wettability alteration and interfacial tension reduction. The findings of this study can help in better understanding of active nanofluids for EOR in ultra-low permeability reservoirs.


2020 ◽  
Vol 10 (8) ◽  
pp. 3767-3777
Author(s):  
Asaad Faraj Hamzah ◽  
Mohammed Idrees Al-Mossawy ◽  
Wijdan Hussein Al-Tamimi ◽  
Fahad M. Al-Najm ◽  
Zainab Mohsen Hameed

Abstract Among 64 bacterial strains isolated in this study, the best two of biosurfactant-producing bacteria were selected and identified based on the phenotypic properties and molecular approach based on 16S rRNA having 100% similarity to the gram-negative Enterobacter aerogenes B19 strain bacteria and rode gram-positive strain Bacillus cereus ISU-02 in the Nucleotide database of the National Center for Biotechnology Information. The study showed that two selected isolates gave the highest positive results that were used to investigate the biosurfactant production including: interfacial reduction, foaming activity, hemolytic activity, CTAB agar plate, drop collapse assay, oil displacement test and emulsification index E24%. Both Bacillus cereus ISU-02 strain and Enterobacter aerogenes B19 strain have reduced the interfacial tension to 27.61 and 28.93, respectively. Biosurfactants produced from both isolates were tested for oil recovery using spontaneous imbibition process. Bacillus cereus ISU-02 strain gave the highest oil recovery of 66.9% for rock permeability of 843 mD, followed by Enterobacter aerogenes B19 strain with oil recovery of 34% for rock permeability 197 mD, while the lowest rate of oil recovery was 12.1% for FW with permeability of 770 mD. An additional oil rate reached to 7.9% has been recovered from the residual oil when the core plug that was treated with formation water alone was retreated with the cell free biosurfactant supernatant. Use of the new biosurfactants has improved oil recovery better than use of formation water alone or formation water with the commercial surfactant SDS.


2021 ◽  
Author(s):  
Shaina Kelly ◽  
◽  
Ron J.M. Bonnie ◽  
Micheal J. Dick ◽  
Dragan Veselinovic ◽  
...  

Matrix wettability is a key driver in relative permeability and, hence, a critical factor controlling imbibition and drainage at UR fracture-matrix interfaces as well as enhanced oil recovery (EOR). In this study, we (1) adapt and apply the NMR-based wettability index (NWI) methodology of Looyestijn et al. (2006) to a variety of unconventional twin samples undergoing, respectively, spontaneous imbibition with oil-displacing-water and water-displacing-oil and (2) compare the robustness of this method among a variety of samples pairs and also to other NMR-based wettability methods. The samples analyzed cover a range of rock types, major formations, maturity and content of organic material. All displayed unique time-lapse wettability profiles and steady state NWI values. This work advances our previous works (Dick et al., 2019; Kelly et al., 2020) on this subject, where the viability of the methodology was established on end-member pilot samples, towards applicability as a UR SCAL method. The NWI methodology predicts T2 spectra using linear combinations (mixing) of “end-point” T2 spectra. The mixing ratios yielding the closest match to the measured spectra are then used to compute a wettability index. These mixing ratios were validated against (1) mass-balance calculations, (2) repeat experiments with heavy water (D2O) instead of H2O and (3) measured T1-T2 maps, enhancing confidence in the robustness of the method. Our comparisons show that alternative approaches representing the T2 spectra through a single mean T2 value or T2 peak-fit, fall short, especially in tight rocks where fast relaxation rate components tend to skew harmonic mean T2 values and also in samples where oil and water peaks are not clearly resolved. Full spectrum-based methods, akin to Looyestijn’s, appear more robust and stable over a much wider range of reservoir conditions. Repeated NMR acquisition throughout our long-term imbibition experiments shows that time-lapse NWI methodology probes the effects of rock properties, saturation changes, and injected fluid chemistry (enhanced oil recovery strategies) on wettability alteration. Additionally, this NWI study quantifies the wide variation in wettability among unconventional samples.


2021 ◽  
pp. 1-18
Author(s):  
Takaaki Uetani ◽  
Hiromi Kaido ◽  
Hideharu Yonebayashi

Summary Low-salinity water (LSW) flooding is an attractive enhanced oil recovery (EOR) option, but its mechanism leading to EOR is poorly understood, especially in carbonate rock. In this paper, we investigate the main reason behind two tertiary LSW coreflood tests that failed to demonstrate promising EOR response in reservoir carbonate rock; additional oil recovery factors by the LSW injection were only +2% and +4% oil initially in place. We suspected either the oil composition (lack of acid content) or the recovery mode (tertiary mode) was inappropriate. Therefore, we repeated the experiments using an acid-enriched oil sample and injected LSW in the secondary mode. The result showed that the low-salinity effect was substantially enhanced; the additional oil recovery factor by the tertiary LSW injection jumped to +23%. Moreover, it was also found that the secondary LSW injection was more efficient than the tertiary LSW injection, especially in the acid-enriched oil reservoir. In summary, it was concluded that the total acid number (TAN) and the recovery mode appear to be the key successful factors for LSW in our carbonate system. To support the conclusion, we also performed contact angle measurement and spontaneous imbibition tests to investigate the influence of acid enrichment on wettability, and moreover, LSW injection on wettability alteration.


Sign in / Sign up

Export Citation Format

Share Document