Bond Strength and Transfer Length of Pretensioned Bridge Girders Cast With Self-Consolidating Concrete

PCI Journal ◽  
2005 ◽  
Vol 50 (6) ◽  
pp. 72-87 ◽  
Author(s):  
Amgad F. Morgan Girgis ◽  
Christopher Y. Tuan
Author(s):  
Mark Haynes ◽  
Chih-Hang John Wu ◽  
B. Terry Beck ◽  
Naga Narendra B. Bodapati ◽  
Robert J. Peterman

The purpose of this research project is to develop a mathematical model that predicts the bond strength of a prestressing steel reinforcement wire given the known geometrical features of the wire. The geometrical features of the reinforcement wire were measured by a precision non-contact profilometer. With this mathematical model, prestressing reinforcement wires can now be analyzed for their bond strength without destructive testing. This mathematical model has the potential to serve as a quality control assessment in reinforcement wire production. In addition this mathematical model will provide insight into which reinforcement wires provide the greatest bond strength and which combinations of geometrical features of the reinforcement wire are responsible for providing the bond strength. A precision non-contact profilometer has been developed to measure the important geometrical features of the reinforcement wire. The profilometer is capable of sub-micron resolution measurements to provide an extremely high quality three-dimensional rendering of the reinforcement wire surface profile. From this detailed profile data it is then possible to extract all of the relevant geometrical features of the reinforcement wire. A mathematical model has been created by testing a variety of different reinforcement wires available in the market. By correlating the transfer length of concrete prisms made with the reinforcement wires to various geometrical features, several different levels of mathematical correlation complexity have been investigated. The current empirical correlation models under development are first order and combine three to four unique geometrical features of the reinforcement wire which then act as predictors of the concrete prism transfer length. The resulting mathematical model relating the wire geometrical features to transfer length is referred to as the Bond Index Number (BIN). The BIN is shown to provide a numerical measure of the bond strength of prestressing steel reinforcement wire, without the need for performing destructive tests with the reinforcement wire.


2016 ◽  
Vol 113 (5) ◽  
Author(s):  
David B. Garber ◽  
José M. Gallardo ◽  
Dean J. Deschenes ◽  
Oguzhan Bayrak

Sign in / Sign up

Export Citation Format

Share Document