Effects of Meloidogyne incognita, Pseudomonas syringae pv. pisi and Rhizobium leguminosarum inoculated alone, simultaneously, and sequentially, on the growth and biochemical parameters of pea (Pisum sativum) in three soil types

Author(s):  
Deeksha Kashyap ◽  
Zaki Anwar Siddiqui

Abstract Effects of Meloidogyne incognita, Pseudomonas syringae pv. pisi and Rhizobium leguminosarum were studied on growth and biochemical parameters of pea (Pisum sativum L.) in three soil types. Plants grown in 20% fly ash attained higher plant growth, chlorophyll and carotenoid followed by loam soil and 20% sand. Inoculation of R. leguminosarum resulted in increased plant growth, nodulation, chlorophyll and carotenoid over control. Root nodulation and proline contents were high in plants grown in 20% sand and least in 20% fly ash. Inoculation of M. incognita prior to P. syringae pv. pisi resulted in a greater reduction in plant growth, nodulation, chlorophyll and carotenoid content and least where P. syringae pv. pisi was inoculated prior to M. incognita. Inoculation of pathogens increased proline contents. Galling and population of M. incognita was high in 20% sand followed by loam soil and fly ash amended soil. P. syringae pv. pisi and R. leguminosarum had adverse effect on galling and nematode population. The principal component analysis identifies interaction of pathogens and showed segregation of various treatments in the plots.

1970 ◽  
Vol 17 ◽  
pp. 17-22 ◽  
Author(s):  
Kamal Singh ◽  
A. A. Khan ◽  
Iram Khan ◽  
Rose Rizvi ◽  
M. Saquib

Plant growth, yield, pigment and protein content of cow-pea were increased significantly at lower levels (20 and 40%) of fly ash but reverse was true at higher levels (80 and 100%). Soil amended by 60% fly ash could cause suppression in growth and yield in respect to 40% fly ash treated cow-pea plants but former was found at par with control (fly ash untreated plants). Maximum growth occurred in plants grown in soil amended with 40% fly ash. Nitrogen content of cow-pea was suppressed progressively in increasing levels of fly ash. Moreover,  Rhizobium leguminosarum  influenced the growth and yield positively but Meloidogyne javanica caused opposite effects particularly at 20 and 40% fly ash levels. The positive effects of R. leguminosarum were marked by M. javanica at initial levels. However, at 80 and 100% fly ash levels, the positive and negative effects of R. leguminosarum and/or M. javanica did not appear as insignificant difference persist among such treatments.Key words:  Meloidogyne javanica; Rhizobium leguminosarum; Fly ash; Growth; YieldDOI: 10.3126/eco.v17i0.4098Ecoprint An International Journal of Ecology Vol. 17, 2010 Page: 17-22 Uploaded date: 28 December, 2010  


Plant Disease ◽  
2014 ◽  
Vol 98 (3) ◽  
pp. 336-343 ◽  
Author(s):  
J. Jaraba ◽  
C. S. Rothrock ◽  
T. L. Kirkpatrick ◽  
K. R. Brye

Microplots were used to evaluate the impact of soil texture on Meloidogyne incognita, Thielaviopsis basicola, and their interaction on cotton. A native silt loam soil (48% sand) and four different artificial soil textures produced by mixing native soil with sand (53, 70, 74, and 87% sand) were studied. Each soil texture was infested with 0, 4, or 8 M. incognita eggs and 0 or 20 T. basicola chlamydospore chains per gram of soil in a factorial treatment arrangement. Plots were watered when soil moisture fell below –10 joules/kg for the first 21 days and –30 joules/kg from 22 days to harvest. Plant growth was suppressed early in the season and midseason by T. basicola. M. incognita suppressed plant growth and delayed plant development late in the season across all soil textures. Cotton yield was lower in the presence of either T. basicola or M. incognita. An interaction between M. incognita and T. basicola, which decreased plant growth and yield, occurred in 2006 when neither pathogen caused substantial plant damage. Plant growth, development, and yield were lowest in soils with >74% sand. Root colonization by T. basicola and fungal reproduction and survival decreased in soil having 87% sand. M. incognita generally caused more galling and reproduction in soils as sand content increased. Root galling severity and M. incognita reproduction were suppressed by the presence of T. basicola in soil at sand contents lower than 87%. Soil texture had a greater impact on T. basicola than on M. incognita in this study.


2020 ◽  
Vol 14 (4) ◽  
pp. 2603-2609
Author(s):  
Arun Kumar Patel ◽  
Umakant Banjare ◽  
Ajjo Kumari ◽  
Ramesh Kumar Singh ◽  
Kapil Deo Pandey

Rhizobacteria (PGPR) that promote the plant growth are essential component of sustainable agriculture. Pea (Pisum sativum L.) root nodule Rhizobium leguminosarum bv. viciae ten strains were cultured at two different temperatures (28°C and 45°C). Out of eight strains screened the three N25, N30 and N40 were temperature tolerant while only one strain (N40) showed tolerance to pH11. The growth of Rhizobium strain N40 at 45 °C was 96.8 percent as compared to the growth of the at 28°C. The temperature tolerant strain N40 produced maximum IAA and solubilized insoluble tri calcium phosphate compared to other strains and thus can be used microbial inoculant in biofertilizer technology.


Sign in / Sign up

Export Citation Format

Share Document