scholarly journals Genetic variability of kernel provitamin-A in sub-tropically adapted maize hybrids possessing rare allele of β-carotene hydroxylase

2019 ◽  
pp. 1-11
Author(s):  
R. Goswami ◽  
R.U. Zunjare ◽  
S. Khan ◽  
V. Muthusamy ◽  
A. Baveja ◽  
...  
2019 ◽  
Vol 47 (2) ◽  
pp. 205-215 ◽  
Author(s):  
R. Goswami ◽  
R.U. Zunjare ◽  
S. Khan ◽  
V. Muthusamy ◽  
A. Baveja ◽  
...  

2019 ◽  
Vol 138 (2) ◽  
pp. 174-183 ◽  
Author(s):  
Rajat Goswami ◽  
Rajkumar Uttamrao Zunjare ◽  
Suphiya Khan ◽  
Aanchal Baveja ◽  
Vignesh Muthusamy ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1580
Author(s):  
Abebe Menkir ◽  
Ibnou Dieng ◽  
Wende Mengesha ◽  
Silvestro Meseka ◽  
Bussie Maziya-Dixon ◽  
...  

Maize is consumed in different traditional diets as a source of macro- and micro-nutrients across Africa. Significant investment has thus been made to develop maize with high provitamin A content to complement other interventions for alleviating vitamin A deficiencies. The current breeding focus on increasing β-carotene levels to develop biofortified maize may affect the synthesis of other beneficial carotenoids. The changes in carotenoid profiles, which are commonly affected by environmental factors, may also lead to a trade-off with agronomic performance. The present study was therefore conducted to evaluate provitamin A biofortified maize hybrids across diverse field environments. The results showed that the difference in accumulating provitamin A and other beneficial carotenoids across variable growing environments was mainly regulated by the genetic backgrounds of the hybrids. Many hybrids, accumulating more than 10 µg/g of provitamin A, produced higher grain yields (>3600 kg/ha) than the orange commercial maize hybrid (3051 kg/ha). These hybrids were also competitive, compared to the orange commercial maize hybrid, in accumulating lutein and zeaxanthins. Our study showed that breeding for enhanced provitamin A content had no adverse effect on grain yield in the biofortified hybrids evaluated in the regional trials. Furthermore, the results highlighted the possibility of developing broadly adapted hybrids containing high levels of beneficial carotenoids for commercialization in areas with variable maize growing conditions in Africa.


2014 ◽  
Vol 84 (Supplement 1) ◽  
pp. 25-29 ◽  
Author(s):  
Guangwen Tang

Humans need vitamin A and obtain essential vitamin A by conversion of plant foods rich in provitamin A and/or absorption of preformed vitamin A from foods of animal origin. The determination of the vitamin A value of plant foods rich in provitamin A is important but has challenges. The aim of this paper is to review the progress over last 80 years following the discovery on the conversion of β-carotene to vitamin A and the various techniques including stable isotope technologies that have been developed to determine vitamin A values of plant provitamin A (mainly β-carotene). These include applications from using radioactive β-carotene and vitamin A, depletion-repletion with vitamin A and β-carotene, and measuring postprandial chylomicron fractions after feeding a β-carotene rich diet, to using stable isotopes as tracers to follow the absorption and conversion of plant food provitamin A carotenoids (mainly β-carotene) in humans. These approaches have greatly promoted our understanding of the absorption and conversion of β-carotene to vitamin A. Stable isotope labeled plant foods are useful for determining the overall bioavailability of provitamin A carotenoids from specific foods. Locally obtained plant foods can provide vitamin A and prevent deficiency of vitamin A, a remaining worldwide concern.


2009 ◽  
Vol 102 (3) ◽  
pp. 342-349 ◽  
Author(s):  
Julie A. Howe ◽  
Bussie Maziya-Dixon ◽  
Sherry A. Tanumihardjo

Efforts to increase β-carotene in cassava have been successful, but the ability of high-β-carotene cassava to prevent vitamin A deficiency has not been determined. Two studies investigated the bioefficacy of provitamin A in cassava and compared the effects of carotenoid content and variety on vitamin A status in vitamin A-depleted Mongolian gerbils (Meriones unguiculatus). Gerbils were fed a vitamin A-free diet 4 weeks prior to treatment. In Expt 1, treatments (ten gerbils per group) included 45 % high-β-carotene cassava, β-carotene and vitamin A supplements (intake matched to high-β-carotene cassava group), and oil control. In Expt 2, gerbils were fed cassava feeds with 1·8 or 4·3 nmol provitamin A/g prepared with two varieties. Gerbils were killed after 4 weeks. For Expt 1, liver vitamin A was higher (P < 0·05) in the vitamin A (1·45 (sd 0·23) μmol/liver), lower in the control (0·43 (sd 0·10) μmol/liver), but did not differ from the β-carotene group (0·77 (sd 0·12) μmol/liver) when compared with the high-β-carotene cassava group (0·69 (sd 0·20) μmol/liver). The bioconversion factor was 3·7 μg β-carotene to 1 μg retinol (2 mol:1 mol), despite 48 % cis-β-carotene [(Z)-β-carotene] composition in cassava. In Expt 2, cassava feed with 4·3 nmol provitamin A/g maintained vitamin A status. No effect of cassava variety was observed. Serum retinol concentrations did not differ. β-Carotene was detected in livers of gerbils receiving cassava and supplements, but the cis-to-trans ratio in liver differed from intake. Biofortified cassava adequately maintained vitamin A status and was as efficacious as β-carotene supplementation in the gerbil model.


2021 ◽  
pp. 1-31
Author(s):  
Sumia Akram ◽  
Muhammad Mushtaq ◽  
Ammara Waheed
Keyword(s):  

Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1625
Author(s):  
Innocent Iseghohi ◽  
Ayodeji Abe ◽  
Silvestro Meseka ◽  
Wende Mengesha ◽  
Melaku Gedil ◽  
...  

Vitamin A deficiency (VAD) is a serious problem in sub-Saharan Africa (SSA) and other parts of the world. Understanding the effect of marker-based improvement (MARS) of two maize synthetics (HGA and HGB) representing different heterotic groups on their agronomic performance, carotenoid content, and combining abilities could help identify suitable sources to develop divergent inbred lines for optimizing heterosis. This study involved three selection cycles each of the two synthetics and their nine varietal-cross hybrids together with a released check variety was conducted across four diverse locations in Nigeria in 2018 and 2019. Environment and hybrid effects were significant on grain yield and other agronomic traits as well as provitamin A content and other carotenoids. Genetic improvement per cycle of MARS in the parental synthetics was 15% for provitamin A, 25% for β-carotene and 26% for lutein in HGA and 4% for grain yield, 3% for zeaxanthin and 5% for α-carotene in HGB. Grain yield and agronomic traits of the two maize synthetics were controlled by additive and non-additive gene effects, while provitamin A content and other carotenoids were mainly controlled by additive gene effects. Some selection cycles which were high in grain yield and provitamin A content were identified as potential sources of new and divergent maize inbred lines in maize breeding programs. Some varietal-cross hybrids expressed significant mid-parent heterosis for grain yield and moderate mid-parent heterosis for provitamin A, β-carotene and xanthophylls. These hybrids could be commercialized at reasonable prices to small-scale farmers in rural areas that are most affected by vitamin A deficiency.


2020 ◽  
Vol 4 ◽  
Author(s):  
Abdulazeez Olamilekan Elemosho ◽  
Emmanuel Anyachukwu Irondi ◽  
Emmanuel Oladeji Alamu ◽  
Emmanuel Oladipipo Ajani ◽  
Busie Maziya-Dixon ◽  
...  

Understanding the bioactive constituents and physicochemical components in cereals can provide insights into their potential health benefits and food applications. This study evaluated some bioactive constituents, carbohydrate profiles and pasting properties of 16 Striga-resistant hybrids, with yellow-orange kernel color and semi-flint to flint kernel texture, grown in two replications at two field locations in Nigeria. Carotenoids were quantified using HPLC, while other analyses were carried out using standard laboratory methods. The ranges of major carotenoids (μg/g) across the two locations varied from 2.6 to 9.6 for lutein, from 2.1 to 9.7 for zeaxanthin, from 0.8 to 2.9 for β-cryptoxanthin, from 1.4 to 4.1 for β-carotene; with total xanthophylls and provitamin A carotenoids (pVAC) ranging from 5.4 to 17.1 and 1.4 to 4.1 μg/g, respectively. Tannins content ranged from 2.1 to 7.3 mg/g, while phytate ranged from 0.4 to 7.1%. Starch, free sugar, amylose and amylopectin ranged from 40.1 to 88.9%, 1.09 to 6.5%, 15.0 to 34.1%, and 65.9 to 85.0%, respectively. Peak and final viscosities ranged from 57.8 to 114.9 and 120.3 to 261.6 Rapid Visco Units (RVU), respectively. Total xanthophylls, β-carotene, tannins, phytate, sugar, amylose and amylopectin levels, as well as peak and final viscosities, varied significantly (p &lt; 0.05) across the hybrids. Amylose was significantly correlated (p &lt; 0.05) with total xanthophylls, β-carotene, pVAC, phytate and pasting temperature (r = 0.3, 0.3, 0.4, 0.3, 0.3, respectively), but starch significantly correlated with tannins (r = 0.3). Hence, the Striga-resistant yellow-orange maize hybrids have a good combination of bioactive constituents, carbohydrate profile and pasting properties, which are partly influenced by hybrid.


Sign in / Sign up

Export Citation Format

Share Document