scholarly journals Determination of narciclasine in mouse blood by UPLC-MS/MS and its application to a pharmacokinetic study

Author(s):  
Ke Ren ◽  
Tiantian Feng ◽  
Hai Shi ◽  
Jianshe Ma ◽  
Yongxi Jin

AbstractNarciclasine is a 7-hydroxy derivative of lycorisidine. It was the first alkaloid isolated from the stem of narcissus (Amaryllidaceae) in 1967. Six mice were given narciclasine (5 mg/kg) by intravenous administration. A UPLC-MS/MS method was developed to determine narciclasine in mouse blood. Tectorigenin (internal standard, IS) and narciclasine were gradient eluted by mobile phase of methanol and 0.1% formic acid in a BEH C18 column. The multiple reaction monitoring (MRM) of m/z 308.1→248.1 for narciclasine and m/z 301.1→286.0 for IS with an electrospray ionization (ESI) source was used for quantitative determination. The calibration curve ranged from 1 to 6,000 ng/mL. The accuracy was from 92.5 to 107.3%, and the matrix effect was between 103.6 and 107.4%. The developed UPLC-MS/MS method was successfully applicated to a pharmacokinetic study of narciclasine in mice after intravenous administration (5 mg/kg).

Author(s):  
Shuhua Tong ◽  
Yuqi Zeng ◽  
Jianshe Ma ◽  
Congcong Wen

AbstractLiensinine is a bisbenzyltetrahydroisoquinoline alkaloid extracted from lotus (Nelumbo nucifera GAERTNER., Nelumbonaceae), especially in its embryo loti “Lien Tze Hsin” (green embryo of mature seed). A rapid and simple UPLC-MS/MS method was developed to determine liensinine in mouse blood and its application to a pharmacokinetic study. The blood samples were preprocessed by protein precipitation using acetonitrile. Midazolam (internal standard, IS) and liensinine were gradient eluted by mobile phase of methanol and water (0.1% formic acid) in a Waters UPLC BEH C18 column. The multiple reaction monitoring of m/z 611.3 → 206.1 for liensinine and m/z 326.2 → 291.1 for IS with an electrospray ionization (ESI) source was used for quantitative detection. The calibration curve ranged from 0.5 to 400 ng/mL (r > 0.995). The accuracy ranged from 92.2 to 108.2%, the precision of intra-day and inter-day was less than 14%, and the matrix effect was between 100.0% and 109.6%, the recovery was better than 71.0%. The developed UPLC-MS/MS method was successfully used for a pharmacokinetic study of liensinine in mice after oral (5 mg/kg) and intravenous administration (1 mg/kg), and the absolute availability of liensinine was 1.8%.


Author(s):  
Jianbo Li ◽  
Yuqi Yao ◽  
Minyue Zhou ◽  
Zheng Yu ◽  
Yinan Jin ◽  
...  

AbstractTectorigenin, tectoridin, irigenin, and iridin are the four most predominant compounds present in She Gan. She Gan has been used in traditional Chinese medicine because of its anti-inflammatory, hepatoprotective, anti-tumor, antioxidant, phytoestrogen-like properties. In this paper, a UPLC-MS/MS method was developed to measure the pharmacokinetics of tectorigenin, tectoridin, irigenin, iridin after intravenous administration in mice. A UPLC BEH C18 (50 mm × 2.1 mm, 1.7 μm particle size) chromatographic column was utilized for separation of the four target analytes and internal standard (IS), and the analysis of blood plasma samples; the mobile phase consisted of an acetonitrile-water (w/0.1% formic acid) gradient elution. Electron spray ionization (ESI) positive-ion mode and multiple reaction monitoring (MRM) mode was used for quantitative analysis of the analytes and internal standard. The four compounds were administered intravenously (sublingual) at doses of 5 mg/kg. After blood sampling, samples were processed and then analyzed by UPLC-MS/MS. The linearity of the method was robust over the concentration range of 2–5,000 ng/mL. The intra-day precision of the analysis was within 15%, the inter-day precision was within 12%, and the accuracy was between 92% and 110%. The recoveries were 65–68%, and the matrix effect was 93–109%. The established UPLC-MS/MS detection method was then successfully applied to study the pharmacokinetics of tectorigenin, tectoridin, irigenin, iridin in mice.


Author(s):  
Jing Zhou ◽  
Hongzhe Wang ◽  
Caiyun Miao ◽  
Yunxi Yao ◽  
Jianshe Ma

AbstractA rapid and simple UPLC-MS/MS method was developed to determine toddalolactone in mouse blood and applied to measure the pharmacokinetics of toddalolactone in mice. Blood samples were first preprocessed by ethyl acetate liquid-liquid extraction. Oxypeucedanin hydrate (internal standard, IS) and toddalolactone were gradient eluted from a UPLC BEH C18 column using a mobile phase consisting of acetonitrile and water (0.1% formic acid). Using electrospray ionization (ESI) as the ionization source, multiple reaction monitoring was used to detect the precursor and product ions of m/z 309.2 and 205.2, respectively, for toddalolactone and of m/z 305.1 and 203.0 for IS, respectively, for quantitative detection. A calibration curve was run over the concentration range of 5–4,000 ng/mL (r > 0.995). The matrix effects ranged from 93.5 to 98.4%, and the recovery was higher than 77.3%. The precision was less than 13%, and the accuracy ranged from 90.9 to 108.4%. The developed UPLC-MS/MS method was successfully used for measuring the pharmacokinetics of toddalolactone in mice after oral (20 mg/kg) and intravenous administration (5 mg/kg), and the absolute bioavailability of toddalolactone was 22.4%.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Siyuan Chen ◽  
Jianshe Ma ◽  
Xianqin Wang ◽  
Quan Zhou

In this paper, a UPLC-MS/MS method was developed for the determination of ropivacaine and its metabolite 3-hydroxy ropivacaine in cerebrospinal fluid. The cerebrospinal fluid was processed by ethyl acetate liquid-liquid extraction. The multiple reaction monitoring (MRM) mode was used for quantitative analysis by monitoring the transitions of m/z 275.3 → 126.2 for ropivacaine, m/z 291.0 → 126.0 for 3-hydroxy ropivacaine, and m/z 290.2 → 198.2 for the internal standard. Standard curves for ropivacaine and 3-hydroxy ropivacaine in cerebrospinal fluid were conducted over the concentration range of 0.2–2000 ng/mL, demonstrating excellent linearity, and the lower limit of quantification was 0.2 ng/mL. The intraday precision of ropivacaine and 3-hydroxy ropivacaine was less than 11%, while the interday precision was less than 7%. The accuracy ranged between 87% and 107%, the average extraction efficiency was higher than 79%, and the matrix effect was between 89% and 98%. The developed method was then applied to a case of suspected poisoning of ropivacaine.


2019 ◽  
Vol 15 (2) ◽  
pp. 194-199 ◽  
Author(s):  
Huanchun Song ◽  
Yiwei Huang ◽  
Dongqing Zhu ◽  
Shuhua Tong ◽  
Meiling Zhang ◽  
...  

Introduction: Deltaline, an aconitine-type alkaloid, was detected in mouse blood using an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method, and the pharmacokinetics of deltaline following intravenous administration in mice was studied. </P><P> Materials and Methods: The gelsenicine was used as the internal standard (IS). Deltaline and IS were eluted at a flow rate of 0.4 ml/min and separated on a UPLC BEH C18 column by gradient elution using acetonitrile and 10 mmol/L ammonium acetate (0.1% formic acid) as a mobile phase. The following transitions were obtained at m/z 508.2→75.0 for deltaline and m/z 327.1→107.8 for gelsenicine in multiple reactions monitoring mode. Acetonitrile was used to precipitate protein. Six mice after intravenous administration of a single dose of deltaline (1 mg/kg), 20-µL blood samples from each mouse were collected from the tail vein. Results: The UPLC-MS/MS method was sensitive and linear (r>0.995) with a lower limit of quantitation (LLOQ) of 0.1 ng/mL over the range of 0.1-500 ng/mL. Intra- and inter-day precisions were below 13%, the accuracy range was between 88.0% and 108.2%, the recovery was higher than 90.1%, and the matrix effect was between 102.9% and 108.1%. Conclusion: The method was sensitive, fast, specific, and has been successfully applied to a pharmacokinetic study of deltaline after intravenous administration.


Author(s):  
Chongliang Lin ◽  
Dezhen Song ◽  
Haodong Jiang ◽  
Lvqi Luo ◽  
Xi Bao ◽  
...  

Abstract Eugenitin is a non-volatile chromone derivative which is always found in dried flower buds of Syzygium aromaticum L. (Merr.) & L.M. Perry. Until now, there were no reports about the pharmacokinetics of eugenitin in biological fluids. A UPLC-MS/MS method developed to determine eugenitin in mouse blood. The blood samples were prepared by protein precipitation with acetonitrile. Chrysin (internal standard, IS) and eugenitin were gradient eluted by mobile phase of acetonitrile and water (0.1% formic acid) in a BEH C18 column. The multiple reaction monitoring (MRM) of m/z 221.1→206.0 for eugenitin and m/z 255.1→152.9 for IS with an electrospray ionization (ESI) source was used for quantitative detection. The calibration curve ranged from 0.5 to 500 ng/mL (r > 0.995). The accuracy ranged from 98 to 113%, the precision was less than 12%, and the matrix effect was between 86 and 94%, the recovery was better than 81%. The developed method was successfully used for pharmacokinetics of eugenitin in mice after intravenous (5 mg/kg) and oral (20 mg/kg) administration, and the absolute availability of eugenitin was 12%.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Lianguo Chen ◽  
Jianshe Ma ◽  
Xianqin Wang ◽  
Meiling Zhang

A specific ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method has been developed for the simultaneous determination of six Uncaria alkaloids in mouse blood with midazolam as the internal standard (IS). Only 20 μL blood was needed for sample preparation, and the protein was precipitated with acetonitrile. The UPLC BEH C18 column (2.1 mm×100 mm, 1.7 μm) was used for chromatographic separation. The mobile phase consisted of 0.1% formic acid and acetonitrile with gradient elution within 5.5 min. Multiple reaction monitoring (MRM) and the positive electrospray ionization model were used for quantitative analysis. The accuracy of the UPLC-MS/MS method ranged from 86.5% to 110.4%. The precision for intraday and interday was ≤15% each. The mean recovery and the matrix effects were found to be 64.4-86.8% and 94.1-109.4%, respectively. The calibration curves in blood were linear in the range of 1-1000 ng/mL with a favorable correlation coefficient (r2) of 0.995. The pharmacokinetic results showed that six Uncaria alkaloids metabolized rapidly in mice with a half-life between 0.6 h and 4.4 h. The bioavailability of corynoxeine, isocorynoxeine, rhynchophylline, isorhynchophylline, hirsutine, and hirsuteine was 27.3%, 32.7%, 49.4%, 29.5%, 68.9%, and 51.0%, respectively, which showed satisfactory oral absorption of each alkaloid.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Zhe Wang ◽  
Le-jing Lian ◽  
Yan-yan Dong ◽  
Xiao Cui ◽  
Jian-chang Qian ◽  
...  

Anlotinib is a novel inhibitor of receptor kinase tyrosine with multitargets and has a broad spectrum of inhibitory action on tumor angiogenesis and growth. A simple and rapid UHPLC-MS/MS bioanalytical method was validated for the determination of anlotinib in rat plasma, using imatinib as an internal standard. An Acquity BEH C18 column was used to separate analytes. The eluents consisted of formic acid/water (0.1 : 100, v/v) and acetonitrile with a mobile phase. A triple quadrupole mass spectrometer was operated for the quantification with multiple reaction monitoring (MRM) to determine transitions: 408.2 ⟶ 339.1 for anlotinib, and 494.3 ⟶ 394.1 for imatinib. The validated range was 0.1–50 ng/mL for anlotinib. Mean recovery rate of anlotinib in plasma was ≥99.32% and reproducible. Also, the intra- and interday precisions were both below 15%. This robust method was successfully applied to support the pharmacokinetic study of anlotinib in rats.


2010 ◽  
Vol 93 (5) ◽  
pp. 1666-1671 ◽  
Author(s):  
Xi Xia ◽  
Xiaowei Li ◽  
Shuangyang Ding ◽  
Jianzhong Shen

Abstract A sensitive and reliable method has been developed and validated for the determination of chloramphenicol in poultry and swine liver using SPE and ultra-performance liquid chromatography (UPLC)/MS/MS. The liver samples were extracted with ethyl acetate, defatted with n-hexane, and further cleaned up using SPE cartridges with polymeric sorbent. An Acquity BEH C18 column was used for gradient UPLC separation, with water and acetonitrile as the mobile phase. The multiple reaction monitoring mode was used for two precursor-product ion transitions for chloramphenicol and one for the internal standard. The method was validated at 0.1, 0.3, and 1.0 µg/kg. Mean recoveries from fortified samples ranged from 95.5 to 106.7% with an RSD of 12.2%. The method LOD was &lt;0.02 µg/kg.


2020 ◽  
Vol 16 (7) ◽  
pp. 960-966
Author(s):  
Qinghua Weng ◽  
Yichuan Chen ◽  
Zuoquan Zhong ◽  
Qianqian Wang ◽  
Lianguo Chen ◽  
...  

Introduction: In this study, we used UPLC-MS/MS to detect shanzhiside methylester in rat plasma, and investigated its pharmacokinetics in rats. Materials and Methods: Diazepam was utilized as an internal standard (IS), and acetonitrile precipitation method was used to process the plasma samples. Chromatographic separation was achieved using a UPLC BEH C18 column using mobile phase of methanol-0.1 % formic acid with gradient elution. Electrospray ionization (ESI) tandem mass spectrometry in multiple reaction monitoring (MRM) mode with positive ionization was applied. Results: The results indicated that within the range of 5-4000 ng/mL, linearity of shanzhiside methylester in rat plasma was acceptable (r>0.995), and the lower limit of quantification (LLOQ) was 5 ng/mL. Intra-day and inter-day precision RSD of shanzhiside methylester in rat plasma were lower than 14%. Accuracy range was between 87.3 % and 109.1 %, and matrix effect was between 99.2% and 106.3%. Conclusion: The method was successfully applied in the pharmacokinetics of shanzhiside methylester in rats after intravenous administration.


Sign in / Sign up

Export Citation Format

Share Document