scholarly journals Two-Stage Anaerobic Co-digestion of Landfill Leachate and Starch Wastes Using Anaerobic Biofilm Reactor for Methane Production

2019 ◽  
Vol 15 (1) ◽  
pp. 53-70
Author(s):  
◽  
Ulfa Triovanta ◽  
Ridho Rinaldi

Abstract The study aims to evaluate two-stage anaerobic co-digestion of leachate and starch waste using anaerobic biofilm bioreactor to enhance methane production. The anaerobic digestion process was operated under the mesophilic condition at 35 ± 1 °C. Hydraulic retention time (HRT) applied to the acidogenesis and methanogenesis reactors were 5 and 25 days, respectively. The organic loading rate (OLR) used in the process of acidogenesis was 2.91 gram volatile solid /L.day, while methanogenesis was 0.58 gram volatile solid (VS) per liter per day. Results showed that two-stage process using biofilm was an effective method for operating anaerobic co-digestion of starch waste and landfill leachate in which the system produced higher methane yield at 125.11 mL methane (CH4) per gram volatile solid (VS) added (mL.CH4/g.VS.added) in comparison to the single-stage process (20.57 mL CH4/g.VS.added) and two-stage process (77.60 mL CH4/g.VS.added) without using biofilm. Two-stage process using biofilm also effectively reduced organic matters in the culture in which the system reached 61% BOD removal in comparison to the single-stage process and two-stage process without biofilm that only had 27.6 and 39.3% BOD removal, respectively. This study suggested that the two-stage process using biofilm would be the preferred technique for treating starch waste and landfill leachate.

2011 ◽  
Vol 64 (2) ◽  
pp. 367-374 ◽  
Author(s):  
C. B. Cota-Navarro ◽  
J. Carrillo-Reyes ◽  
G. Davila-Vazquez ◽  
F. Alatriste-Mondragón ◽  
E. Razo-Flores

The feasibility of integrating biological hydrogen and methane production in a two-stage process using mixed cultures and cheese whey powder (CWP) as substrate was studied. The effect of operational parameters such as hydraulic retention time (HRT) and organic loading rate (OLR) on the volumetric hydrogen (VHPR) and methane (VMPR) production rates was assessed. The highest VHPR was 28 L H2/L/d, obtained during stable operation in a CSTR at HRT and OLR of 6 h and 142 g lactose/L/d, respectively. Moreover, hydrogen (13 L/L/d) was produced even at HRT as low as 3.5 h and OLR of 163 g lactose/L/d, nonetheless, the reactor operation was not stable. Regarding methane production in an UASB reactor, the acidified effluent from the hydrogen-producing bioreactor was efficiently treated obtaining COD removals above 90% at OLR and HRT of 20 g COD/L/d and 6 h, respectively. The two-stage process for continuous production of hydrogen and methane recovered over 70% of the energy present in the substrate. This study demonstrated that hydrogen production can be efficiently coupled to methane production in a two-stage system and that CWP is an adequate substrate for energy production.


2021 ◽  
Vol 163 ◽  
pp. 1210-1221
Author(s):  
Saeed Ghanbari Azad Pashaki ◽  
Mehdi Khojastehpour ◽  
Mohammadali Ebrahimi-Nik ◽  
Abbas Rohani

2020 ◽  
Vol 81 (1) ◽  
pp. 190-198 ◽  
Author(s):  
M. Vital-Jacome ◽  
M. Cazares-Granillo ◽  
J. Carrillo-Reyes ◽  
G. Buitron

Abstract Wine production has increased in recent years, especially in developing countries such as Mexico. This increase is followed by an increase of winery effluents that must be treated to avoid environmental risks. However, little information is available about the characteristics of these effluents and the possible treatments. This paper aimed to characterize the effluents and by-products generated by the Mexican winery industry and to evaluate the performance and stability of the anaerobic treatment using a single-stage and a two-stage process. Results showed that the winery effluents had a high content of biodegradable organic matter, with chemical oxygen demand (COD) values ranging from 221 to 436 g COD/L. The single-stage anaerobic process was able to treat an organic loading rate of 9.6 kg COD/(m3 d); however, it was unstable and highly dependent on the addition of bicarbonate alkalinity (0.31 g NaHCO3/g COD removed). The two-stage process was more stable working at a higher organic load (12.1 kg COD/(m3 d)) and was less dependent on the addition of bicarbonate (0.17 g NaHCO3/g COD removed). The results highlight the potential of the winery effluents to produce methane through anaerobic digestion in a two-stage process, making wine production more sustainable.


2019 ◽  
Vol 79 (2) ◽  
pp. 270-277 ◽  
Author(s):  
Qiaoyan Li ◽  
Yongfeng Li

Abstract A continuous hydrogen and methane production system in a two-stage process has been investigated to increase energy recovery rate from molasses wastewater in this study. This system consisted of a continuous stirred-tank reactor for hydrogen production and an internal circulation (IC) reactor for methane production, and was studied under the influent organic loading rate (OLR) of 18, 24, 30 and 36kg COD/(m3·d) (COD: chemical oxygen demand). The maximum volumetric hydrogen production rate of 2.41 L/(L·d) was obtained at the OLR of 30kg COD/(m3·d) with a hydrogen content of 42%, and the maximum volumetric methane production rate of 2.4 L/(L·d) with a methane content of 74.45% was obtained at the OLR of 36kg COD/(m3·d) using the effluents of hydrogen fermentation as substrate. The maximum of 71.06% of the molasses wastewater energy was converted to biogas (hydrogen and methane) at the OLR of 30kg COD/(m3·d).


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5423
Author(s):  
Margarita Andreas Dareioti ◽  
Aikaterini Ioannis Vavouraki ◽  
Konstantina Tsigkou ◽  
Michael Kornaros

The growing interest in processes that involve biomass conversion to renewable energy, such as anaerobic digestion, has stimulated research in this field in order to assess the optimum conditions for biogas production from abundant feedstocks, like agro-industrial wastes. Anaerobic digestion is an attractive process for the decomposition of organic wastes via a complex microbial consortium and subsequent conversion of metabolic intermediates to hydrogen and methane. The present study focused on the exploitation of liquid cow manure (LCM) and cheese whey (CW) as noneasily and easily biodegradable sources, respectively, using continuous stirred-tank reactors for biogas production, and a comparison was presented between single- and two-stage anaerobic digestion systems. No significant differences were found concerning LCM treatment, in a two-stage system compared to a single one, concluding that LCM can be treated by implementing a single-stage process, as a recalcitrant substrate, with the greatest methane production rate of 0.67 L CH4/(LR·d) at an HRT of 16 d. On the other hand, using the easily biodegradable CW as a monosubstrate, the two-stage process was considered a better treatment system compared to a single one. During the single-stage process, operational problems were observed due to the limited buffering capacity of CW. However, the two-stage anaerobic digestion of CW produced a stable methane production rate of 0.68 L CH4/(LR·d) or 13.7 L CH4/Lfeed, while the total COD was removed by 76%.


2000 ◽  
Vol 42 (12) ◽  
pp. 115-121 ◽  
Author(s):  
B. Wang ◽  
Y. Shen

A study on the performance of an Anaerobic Baffled Reactor(ABR) as a hydrolysis-acidogenesis unit in treating the mixed wastewater of landfill leachate and municipal sewage in different volumetric ratios was carried out. The results showed that ABR substantially improved the biological treatability of the mixed wastewater by increasing its BOD5/COD ratio to 0.4–0.6 from the initial values of 0.15–0.3. The formation of bar-shaped granular sludge of 0.5–5 mm both in diameter and length with an SVI of 7.5–14.2 ml/g was observed in all compartments of the ABR when the organic loading rate reached 4.71 kgCOD/m3 · d. The effects of the ratios of NH4+-N/COD and COD/TP in mixed wastewater on the operational performance were also studied, from which it was found that a reasonable NH4+-N/COD ratio should be lower than 0.02, and the phosphorus supplement was needed when the volumetric ratio was higher than 4:6 for stable operation of ABR.


Author(s):  
Gamal Hassan ◽  
Mohamed Azab El-Liethy ◽  
Fatma El-Gohary ◽  
Sherien Elagroudy ◽  
Mohamed Abo-Aly ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document