scholarly journals Characterization and anaerobic digestion of highly concentrated Mexican wine by-products and effluents

2020 ◽  
Vol 81 (1) ◽  
pp. 190-198 ◽  
Author(s):  
M. Vital-Jacome ◽  
M. Cazares-Granillo ◽  
J. Carrillo-Reyes ◽  
G. Buitron

Abstract Wine production has increased in recent years, especially in developing countries such as Mexico. This increase is followed by an increase of winery effluents that must be treated to avoid environmental risks. However, little information is available about the characteristics of these effluents and the possible treatments. This paper aimed to characterize the effluents and by-products generated by the Mexican winery industry and to evaluate the performance and stability of the anaerobic treatment using a single-stage and a two-stage process. Results showed that the winery effluents had a high content of biodegradable organic matter, with chemical oxygen demand (COD) values ranging from 221 to 436 g COD/L. The single-stage anaerobic process was able to treat an organic loading rate of 9.6 kg COD/(m3 d); however, it was unstable and highly dependent on the addition of bicarbonate alkalinity (0.31 g NaHCO3/g COD removed). The two-stage process was more stable working at a higher organic load (12.1 kg COD/(m3 d)) and was less dependent on the addition of bicarbonate (0.17 g NaHCO3/g COD removed). The results highlight the potential of the winery effluents to produce methane through anaerobic digestion in a two-stage process, making wine production more sustainable.

Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2958 ◽  
Author(s):  
Jun-Gyu Park ◽  
Won-Beom Shin ◽  
Wei-Qi Shi ◽  
Hang-Bae Jun

Bacterial communities change in bulk solution of anaerobic digestion (AD) and bio-electrochemical anaerobic digestion reactors (BEAD) were monitored at each organic loading rate (OLR) to investigate the effect of voltage supply on bacterial species change in bulk solution. Chemical oxygen demand (COD) degradation and methane production from AD and BEAD reactors were also analyzed by gradually increasing food waste OLR. The BEAD reactor maintained stable COD removal and methane production at 6.0 kg/m3·d. The maximum OLR of AD reactor for optimal operation was 4.0 kg/m3·d. pH and alkalinity decline and volatile fatty acid (VFA) accumulation, which are the problem in high load anaerobic digestion of readily decomposable food wastes, were again the major factors destroying the optimal operation condition of the AD reactor at 6.0 kg/m3·d. Contrarily, the electrochemically activated dense communities of exoelectrogenic bacteria and VFA-oxidizing bacteria prevented VFAs from accumulating inside the BEAD reactor. This maintained stable pH and alkalinity conditions, ultimately contributing to stable methane production.


2019 ◽  
Vol 15 (1) ◽  
pp. 53-70
Author(s):  
◽  
Ulfa Triovanta ◽  
Ridho Rinaldi

Abstract The study aims to evaluate two-stage anaerobic co-digestion of leachate and starch waste using anaerobic biofilm bioreactor to enhance methane production. The anaerobic digestion process was operated under the mesophilic condition at 35 ± 1 °C. Hydraulic retention time (HRT) applied to the acidogenesis and methanogenesis reactors were 5 and 25 days, respectively. The organic loading rate (OLR) used in the process of acidogenesis was 2.91 gram volatile solid /L.day, while methanogenesis was 0.58 gram volatile solid (VS) per liter per day. Results showed that two-stage process using biofilm was an effective method for operating anaerobic co-digestion of starch waste and landfill leachate in which the system produced higher methane yield at 125.11 mL methane (CH4) per gram volatile solid (VS) added (mL.CH4/g.VS.added) in comparison to the single-stage process (20.57 mL CH4/g.VS.added) and two-stage process (77.60 mL CH4/g.VS.added) without using biofilm. Two-stage process using biofilm also effectively reduced organic matters in the culture in which the system reached 61% BOD removal in comparison to the single-stage process and two-stage process without biofilm that only had 27.6 and 39.3% BOD removal, respectively. This study suggested that the two-stage process using biofilm would be the preferred technique for treating starch waste and landfill leachate.


2004 ◽  
Vol 50 (6) ◽  
pp. 103-108 ◽  
Author(s):  
D.P. Kunte ◽  
T.Y. Yeole ◽  
D.R. Ranade

Anaerobic digestion offers a good alternative for human waste treatment. However, the fate of enteric bacterial pathogens present in human night soil (HNS) remains a major concern for hygienic safety of the process. A two-stage anaerobic digestion process, consisting of separate acidogenic and methanogenic digesters, was designed and its efficacy in the inactivation of Salmonella typhi was compared to a single-stage digestion process. In a single-stage digestion, complete pathogen inactivation was achieved only in the digesters with high levels of volatile fatty acids (VFA ≅18,000 mg/l) and acidic pH (≅6.0). These digesters, however, showed drastic reduction in methane yield. In the two-stage digestion process, S. typhi was completely inactivated in the acidogenic digester and the methanogenic digester was free from the pathogen even after receiving a daily dose of the pathogen. The process also achieved complete inactivation of other enteric pathogens, viz., Shigella dysenteriae and Vibrio cholerae. The two-stage process was efficient in biogas generation from HNS. Thus, the two-stage process ensures complete hygienic safety in anaerobic digestion of human night soil.


2019 ◽  
Vol 79 (2) ◽  
pp. 270-277 ◽  
Author(s):  
Qiaoyan Li ◽  
Yongfeng Li

Abstract A continuous hydrogen and methane production system in a two-stage process has been investigated to increase energy recovery rate from molasses wastewater in this study. This system consisted of a continuous stirred-tank reactor for hydrogen production and an internal circulation (IC) reactor for methane production, and was studied under the influent organic loading rate (OLR) of 18, 24, 30 and 36kg COD/(m3·d) (COD: chemical oxygen demand). The maximum volumetric hydrogen production rate of 2.41 L/(L·d) was obtained at the OLR of 30kg COD/(m3·d) with a hydrogen content of 42%, and the maximum volumetric methane production rate of 2.4 L/(L·d) with a methane content of 74.45% was obtained at the OLR of 36kg COD/(m3·d) using the effluents of hydrogen fermentation as substrate. The maximum of 71.06% of the molasses wastewater energy was converted to biogas (hydrogen and methane) at the OLR of 30kg COD/(m3·d).


Processes ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 635 ◽  
Author(s):  
Siciliano ◽  
Limonti ◽  
Curcio ◽  
Calabrò

The composting process of organic fraction of municipal solid waste, besides to the residual compost, generates a wastewater that is characterized by a high organic load. The application of anaerobic processes represents an advantageous solution for the treatment and valorization of this type of wastewater. Nevertheless, few works have been focused on the anaerobic digestion of compost leachate. To overcome this dearth, in the present paper an extensive experimental investigation was carried out to develop and analyse the anaerobic treatment of young leachate in completely stirred tank reactors (CSTR). Initially, it was defined a suitable leachate pretreatment to correct its acidic characteristics that is potentially able to inhibit methanogenic biomass activity. The pretreated leachate was fed to the digester over the start-up phase that was completed in about 40 days. During the operational period, the organic load rate (OLR) changed between 4.25 kgCOD/m3d and 38.5 kgCOD/m3d. The chemical oxygen demand (COD) abatement was higher than 90% for OLR values up to 14.5 kgCOD/m3d and around to 80% for applied loads equal to 24.5 kgCOD/m3d. At this OLR, it was reached the maximum daily biogas production of about 9.3 Lbiogas/(Lreactord). The CH4 fraction was between 70%–78% and the methane production yield in the range 0.34–0.38 LCH4/gCODremoved. The deterioration of biogas production started for OLR values that were over the threshold of 24.5 kgCOD/m3d when a volatile fatty acids (VFA) accumulation occurred and the pH dropped below 6.5. The maximum ratio between VFA and alkalinity (ALK) tolerable in the CSTR was identified to be 0.5 gCH3COOH/gCaCO3. Through an economic analysis, it was proven that the digestion of compost leachate could ensure significant economic profits. Furthermore, the produced digestate had characteristics that were compatible for agricultural applications.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5423
Author(s):  
Margarita Andreas Dareioti ◽  
Aikaterini Ioannis Vavouraki ◽  
Konstantina Tsigkou ◽  
Michael Kornaros

The growing interest in processes that involve biomass conversion to renewable energy, such as anaerobic digestion, has stimulated research in this field in order to assess the optimum conditions for biogas production from abundant feedstocks, like agro-industrial wastes. Anaerobic digestion is an attractive process for the decomposition of organic wastes via a complex microbial consortium and subsequent conversion of metabolic intermediates to hydrogen and methane. The present study focused on the exploitation of liquid cow manure (LCM) and cheese whey (CW) as noneasily and easily biodegradable sources, respectively, using continuous stirred-tank reactors for biogas production, and a comparison was presented between single- and two-stage anaerobic digestion systems. No significant differences were found concerning LCM treatment, in a two-stage system compared to a single one, concluding that LCM can be treated by implementing a single-stage process, as a recalcitrant substrate, with the greatest methane production rate of 0.67 L CH4/(LR·d) at an HRT of 16 d. On the other hand, using the easily biodegradable CW as a monosubstrate, the two-stage process was considered a better treatment system compared to a single one. During the single-stage process, operational problems were observed due to the limited buffering capacity of CW. However, the two-stage anaerobic digestion of CW produced a stable methane production rate of 0.68 L CH4/(LR·d) or 13.7 L CH4/Lfeed, while the total COD was removed by 76%.


2020 ◽  
Vol 153 ◽  
pp. 107404 ◽  
Author(s):  
Myrsini Sakarika ◽  
Konstantinos Stavropoulos ◽  
Alexandros Kopsahelis ◽  
Eleni Koutra ◽  
Constantina Zafiri ◽  
...  

2017 ◽  
pp. 130 ◽  
Author(s):  
Margarita A. Dareioti ◽  
Spyros N. Dokianakis ◽  
Constantina Zafiri ◽  
Michael Kornaros

Cheese making companies have a specific product that is seasonally produced and, like most other agro-industries, generate wastewaters characterized by a high organic loading. Cheese whey is the most important waste stream produced having a high organic content (up to 70 g COD/L), which is highly biodegradable, and low alkalinity (50 meq/L). Cheese production industries worldwide generate more than 145 million tones of liquid whey per year. Because of these characteristics, cheese whey may cause serious environmental problems on the local municipal sewage treatment systems or water receptors if disposed untreated. Anaerobic digestion is a particularly attractive treatment solution for high strength wastewaters due to the operational economy and generation of biogas and therefore is considered as a promising solution for energy production from cheese whey, in this case. In this work, a comparative study between single and two-stage anaerobic treatment of cheese whey was conducted in order to enhance biogas production. Our experiments were carried out using one reactor for the single-stage process (operated at a HRT of 20 d), and two reactors connected in series, from which the first one was used for acidogenesis (operated at a HRT of 3 d) and the other for methanogenesis (operated at a HRT of 20 d). The single-stage process presented many operational problems, as a result of little or no buffering capacity of whey, which caused the pH of the anaerobic digester to drop drastically and the process being inhibited. This kind of inhibition proved to be irreversible and the digester was not able to recover even though it was operated batchwise and the value of the pH was restored to 7.0. On the contrary, the two-stage process exhibited a stable biogas production rate of 1.57 L/Lreactor/d with the composition of methane in the biogas reaching 54.3%. The dissolved COD and total carbon concentration removal was 70.5% and 77.2% respectively.


1998 ◽  
Vol 38 (4-5) ◽  
pp. 29-35 ◽  
Author(s):  
C. J. Banks ◽  
P. N. Humphreys

The stability and operational performance of single stage digestion with and without liquor recycle and two stage digestion were assessed using a mixture of paper and wood as the digestion substrate. Attempts to maintain stable digestion in both single stage reactors were unsuccessful due to the inherently low natural buffering capacity exhibited; this resulted in a rapid souring of the reactor due to unbuffered volatile fatty acid (VFA) accumulation. The use of lime to control pH was unsatisfactory due to interference with the carbonate/bicarbonate equilibrium resulting in wide oscillations in the control parameter. The two stage system overcame the pH stability problems allowing stable operation for a period of 200 days without any requirement for pH control; this was attributed to the rapid flushing of VFA from the first stage reactor into the second stage, where efficient conversion to methane was established. Reactor performance was judged to be satisfactory with the breakdown of 53% of influent volatile solids. It was concluded that the reactor configuration of the two stage system offers the potential for the treatment of cellulosic wastes with a sub-optimal carbon to nitrogen ratio for conventional digestion.


Sign in / Sign up

Export Citation Format

Share Document