Nitrate reductase activity and yield of Lens culinaris sprayed with 28-homobrassinolide

2003 ◽  
Vol 51 (4) ◽  
pp. 381-387 ◽  
Author(s):  
S. Hayat ◽  
A. Ahmad

Thirty-day-old plants of Lens culinaris (L.) Medic. cv. Pusa-6 were sprayed with 10-10, 10-8 or 10-6 M aqueous solutions of 28-homobrassinolide (HBR). Root length and nodule number per plant decreased, whereas the leaf nitrate reductase activity (E.C. 1.6.6.1) at 60, 90 and 120 days after sowing and the seed yield at harvest increased significantly in plants sprayed with either concentration of HBR. The values increased at first with an increase in the concentration of HBR but decreased with a further increase above 10-8M, which proved best for improving seed production.

1978 ◽  
Vol 58 (2) ◽  
pp. 283-285 ◽  
Author(s):  
D. G. PATRIQUIN ◽  
J. C. MacKINNON ◽  
K. I. WILKIE

Denitrification in soil around the bases of corn stalks, determined by the "acetylene blockage technique," exhibited a general trend of decline from June to September. Leaf nitrate reductase activity, determined by an in vivo assay procedure, was low in June and July, and then exhibited a pronounced maximum at the time of tasselling.


Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 772
Author(s):  
Zongkui Chen ◽  
Hongyun Gao ◽  
Fei Hou ◽  
Aziz Khan ◽  
Honghai Luo

The changing climatic conditions are causing erratic rains and frequent episodes of moisture stress; these impose a great challenge to cotton productivity by negatively affecting plant physiological, biochemical and molecular processes. This situation requires an efficient management of water-nutrient to achieve optimal crop production. Wise use of water-nutrient in cotton production and improved water use-efficiency may help to produce more crop per drop. We hypothesized that the application of nitrogen into deep soil layers can improve water-nitrogen productivity by promoting root growth and functional attributes of cotton crop. To test this hypothesis, a two-year pot experiment under field conditions was conducted to explore the effects of two irrigation levels (i.e., pre-sowing irrigation (W80) and no pre-sowing irrigation (W0)) combined with different fertilization methods (i.e., surface application (F10) and deep application (F30)) on soil water content, soil available nitrogen, roots morpho-physiological attributes, dry mass and water-nitrogen productivity of cotton. W80 treatment increased root length by 3.1%–17.5% in the 0–40 cm soil layer compared with W0. W80 had 11.3%–52.9% higher root nitrate reductase activity in the 10–30 cm soil layer and 18.8%–67.9% in the 60–80 cm soil layer compared with W0. The W80F10 resulted in 4.3%–44.1% greater root nitrate reductase activity compared with other treatments in the 0–30 cm soil layer at 54–84 days after emergence. Water-nitrogen productivity was positively associated with dry mass, water consumption, root length and root nitrate reductase activity. Our data highlighted that pre-sowing irrigation coupled with basal surface fertilization is a promising option in terms of improved cotton root growth. Functioning in the surface soil profile led to a higher reproductive organ biomass production and water-nitrogen productivity.


1986 ◽  
Vol 80 (2) ◽  
pp. 454-458 ◽  
Author(s):  
Beth M. Nelson-Schreiber ◽  
Lee E. Schweitzer

1983 ◽  
Vol 19 (1) ◽  
pp. 103-109 ◽  
Author(s):  
D. M. Oosterhuis ◽  
G. C. Bate

SUMMARYThe possibility of using seasonal changes in leaf nitrate reductase activity (NRA) as a reliable and sensitive indicator of plant nitrogen (N) status has been investigated in field-grown cotton. These changes were compared with those in nitrate concentration in petioles and variations in soil-N concentration. We conclude that NRA in the uppermost, fully-expanded sympodial leaves may provide a more convenient, sensitive and reliable indicator of plant-N status than measurements of nitrate concentrations in petioles.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1152b-1152
Author(s):  
Linda Gaudreau ◽  
Josée Charbonneau ◽  
Louis-P. Vézina ◽  
André Gosselin

Two cultivars (Karlo and Rosanna) of greenhouse lettuce were grown under different photosynthetic photon fluxes (PPF) and photoperiods provided by 400-W high–pressure sodium lamps. Natural light was compared to suppletmental lighting treatments providing either 50 or 100 μmol m-2-s-1 for photoperiods of 16, 20 or 24 h. Lettuce plants were grown in hydroponic gulleys using a standard nutrient solution. Plant fresh weights were measured every week for the duration of each culture grown between August 1989 and June 1990. The incidence of tipburn and the overall quality of the shoots were determined at the end of each crop. Leaf nitrate contents and nitrate reductase activity were measured for various lighting treatments. The highest fresh weight was obtained for the highest PPF and the longest photoperiod. However, these treatments were associated with a higher incidence of tipburn. Supplemental lighting reduced the leaf nitrate contents and affected the nitrate reductase activity.


Sign in / Sign up

Export Citation Format

Share Document