Effect of 2,4-D and inoculation with Azorhizobium caulinodans on maize

2006 ◽  
Vol 54 (1) ◽  
pp. 121-125 ◽  
Author(s):  
S. P. Saikia ◽  
S. P. Saikia ◽  
V. Jain ◽  
V. Jain ◽  
G. C. Srivastava ◽  
...  

Research over the last few years has shown that inoculation with nitrogen-fixing bacteria of the genus Azorhizobium presents an alternative for (or supplement to) chemical fertilization, mainly due to the capability of the bacteria to produce plant growth- promoting hormones. The Azorhizobium caulinodans strain ORS 571 in combination with 2,4-D was able to colonize the root interior of an Indian maize cultivar. After transplanting to pots, it was noticed that nodulated and Azorhizobium -treated plants showed higher chlorophyll content in the leaf and enhanced nitrate reductase activity, leading to higher yield as compared to the control plants (non-nodulated). A plant growth-promoting effect was clearly visible in all inoculated plants examined. nodulated plants treated with Azorhizobium had higher physiological activities as compared to plants treated only with Azorhizobium . Azorhizobium therefore creates potentially better symbiosis in the form of para -nodules and promotes a higher level of nitrogen fixation, leading to better growth and plant development, with reduced requirements for chemical fertilizers.

2017 ◽  
Vol 199 (3) ◽  
pp. 513-517 ◽  
Author(s):  
Van T. K. Pham ◽  
Hans Rediers ◽  
Maarten G. K. Ghequire ◽  
Hiep H. Nguyen ◽  
René De Mot ◽  
...  

Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1788
Author(s):  
Alejandro Jiménez-Gómez ◽  
Zaki Saati-Santamaría ◽  
Martin Kostovcik ◽  
Raúl Rivas ◽  
Encarna Velázquez ◽  
...  

Rapeseed (Brassica napus L.) is an important crop worldwide, due to its multiple uses, such as a human food, animal feed and a bioenergetic crop. Traditionally, its cultivation is based on the use of chemical fertilizers, known to lead to several negative effects on human health and the environment. Plant growth-promoting bacteria may be used to reduce the need for chemical fertilizers, but efficient bacteria in controlled conditions frequently fail when applied to the fields. Bacterial endophytes, protected from the rhizospheric competitors and extreme environmental conditions, could overcome those problems and successfully promote the crops under field conditions. Here, we present a screening process among rapeseed bacterial endophytes to search for an efficient bacterial strain, which could be developed as an inoculant to biofertilize rapeseed crops. Based on in vitro, in planta, and in silico tests, we selected the strain Pseudomonas brassicacearum CDVBN10 as a promising candidate; this strain produces siderophores, solubilizes P, synthesizes cellulose and promotes plant height in 5 and 15 days-post-inoculation seedlings. The inoculation of strain CDVBN10 in a field trial with no addition of fertilizers showed significant improvements in pod numbers, pod dry weight and shoot dry weight. In addition, metagenome analysis of root endophytic bacterial communities of plants from this field trial indicated no alteration of the plant root bacterial microbiome; considering that the root microbiome plays an important role in plant fitness and development, we suggest this maintenance of the plant and its bacterial microbiome homeostasis as a positive result. Thus, Pseudomonas brassicacearum CDVBN10 seems to be a good biofertilizer to improve canola crops with no addition of chemical fertilizers; this the first study in which a plant growth-promoting (PGP) inoculant specifically designed for rapeseed crops significantly improves this crop’s yields in field conditions.


2019 ◽  
Vol 24 (1) ◽  
pp. 119-125 ◽  
Author(s):  
Yeon-Ju Kim ◽  
Jaewon Lim ◽  
Johan Sukweenadhi ◽  
Ji Woong Seok ◽  
Sang-Won Lee ◽  
...  

2021 ◽  
Vol 8 (4) ◽  
pp. 104-110
Author(s):  
Di Barbaro Gabriela ◽  
Andrada Horacio ◽  
Batallan Morales Silvana ◽  
Espeche Acosta Eliana ◽  
Rizo Melisa ◽  
...  

To determine the effect of Azospirillum brasilense and soil mycorrhizal fungi on the nutrition of the Jerusalem artichoke crop (Helianthus tuberosus L.), evaluations of agronomic parameters and the health status of the plants were carried out, under greenhouse conditions. The tests were carried out, at the moment of the implantation of the culture: the tubers were inoculated with A. brasilense and with native mycorrhizal fungi, generating four treatments including the control and the co-inoculation of the consortium of the microorganisms under study (T0: control or control without inoculation; T1: inoculation with native A. brasilense; T2: inoculation with native mycorrhizal fungi and T3: joint inoculation with A. brasilense and native mycorrhizal fungi. The results indicate that co-inoculation with A. brasilense and with native mycorrhizal fungi increased plant growth in height, leaf area, biomass, dry matter, and yields significantly in greenhouse production. It was determined that the application of the selected microorganisms has a plant growth-promoting effect, increasing the productivity of cultivated topinambur in the greenhouse


Sign in / Sign up

Export Citation Format

Share Document