scholarly journals Selection of the Root Endophyte Pseudomonas brassicacearum CDVBN10 as Plant Growth Promoter for Brassica napus L. Crops

Agronomy ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1788
Author(s):  
Alejandro Jiménez-Gómez ◽  
Zaki Saati-Santamaría ◽  
Martin Kostovcik ◽  
Raúl Rivas ◽  
Encarna Velázquez ◽  
...  

Rapeseed (Brassica napus L.) is an important crop worldwide, due to its multiple uses, such as a human food, animal feed and a bioenergetic crop. Traditionally, its cultivation is based on the use of chemical fertilizers, known to lead to several negative effects on human health and the environment. Plant growth-promoting bacteria may be used to reduce the need for chemical fertilizers, but efficient bacteria in controlled conditions frequently fail when applied to the fields. Bacterial endophytes, protected from the rhizospheric competitors and extreme environmental conditions, could overcome those problems and successfully promote the crops under field conditions. Here, we present a screening process among rapeseed bacterial endophytes to search for an efficient bacterial strain, which could be developed as an inoculant to biofertilize rapeseed crops. Based on in vitro, in planta, and in silico tests, we selected the strain Pseudomonas brassicacearum CDVBN10 as a promising candidate; this strain produces siderophores, solubilizes P, synthesizes cellulose and promotes plant height in 5 and 15 days-post-inoculation seedlings. The inoculation of strain CDVBN10 in a field trial with no addition of fertilizers showed significant improvements in pod numbers, pod dry weight and shoot dry weight. In addition, metagenome analysis of root endophytic bacterial communities of plants from this field trial indicated no alteration of the plant root bacterial microbiome; considering that the root microbiome plays an important role in plant fitness and development, we suggest this maintenance of the plant and its bacterial microbiome homeostasis as a positive result. Thus, Pseudomonas brassicacearum CDVBN10 seems to be a good biofertilizer to improve canola crops with no addition of chemical fertilizers; this the first study in which a plant growth-promoting (PGP) inoculant specifically designed for rapeseed crops significantly improves this crop’s yields in field conditions.

Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1449
Author(s):  
Dasun Premachandra ◽  
Lee Hudek ◽  
Aydin Enez ◽  
Ross Ballard ◽  
Steve Barnett ◽  
...  

Canola (Brassica napus L.) is the third largest crop produced in Australia after wheat and barley. For such crops, the variability of water access, reduced long-term annual rainfall and increasing water prices, higher overall production costs, and variability in production quantity and quality are driving the exploration of new tools to maintain production in an economical and environmentally sustainable way. Microorganisms associated with the rhizosphere have been shown to enhance plant growth and offer a potential way to maintain or even increase crop production quality and yield in an environmentally sustainable way. Here, seven bacterial isolates from canola rhizosphere samples are shown to enhance canola growth, particularly in low water activity systems. The seven strains all possessed commonly described plant growth promoting traits, including the ability to produce indole-3-acetic acid and 1-aminocyclopropane-1-carboxylate deaminase, and the capacity to solubilise nutrients (Fe2+/3+ and PO43−). When the isolates were inoculated at the time of sowing in pot-based systems with either sand or clay loam media, and in field trials, a significant increase in dry root and shoot biomass was recorded compared to uninoculated controls. It is likely that the strains’ plant growth promoting capacity under water stress is due to the combined effects of the bacterial phenotypes examined here.


2021 ◽  
Vol 9 (1) ◽  
pp. 161
Author(s):  
Ying Liu ◽  
Jie Gao ◽  
Zhihui Bai ◽  
Shanghua Wu ◽  
Xianglong Li ◽  
...  

Plant growth-promoting rhizobacteria (PGPR) are noticeably applied to enhance plant nutrient acquisition and improve plant growth and health. However, limited information is available on the compositional dynamics of rhizobacteria communities with PGPR inoculation. In this study, we investigated the effects of three PGPR strains, Stenotrophomonas rhizophila, Rhodobacter sphaeroides, and Bacillus amyloliquefaciens on the ecophysiological properties of Oilseed rape (Brassica napus L.), rhizosphere, and bulk soil; moreover, we assessed rhizobacterial community composition using high-throughput Illumina sequencing of 16S rRNA genes. Inoculation with S. rhizophila, R. sphaeroides, and B. amyloliquefaciens, significantly increased the plant total N (TN) (p < 0.01) content. R. sphaeroides and B. amyloliquefaciens selectively enhanced the growth of Pseudomonadacea and Flavobacteriaceae, whereas S. rhizophila could recruit diazotrophic rhizobacteria, members of Cyanobacteria and Actinobacteria, whose abundance was positively correlated with inoculation, and improved the transformation of organic nitrogen into inorganic nitrogen through the promotion of ammonification. Initial colonization by PGPR in the rhizosphere affected the rhizobacterial community composition throughout the plant life cycle. Network analysis indicated that PGPR had species-dependent effects on niche competition in the rhizosphere. These results provide a better understanding of PGPR-plant-rhizobacteria interactions, which is necessary to develop the application of PGPR.


2021 ◽  
Vol 13 (10) ◽  
pp. 5704
Author(s):  
Renata Cinkocki ◽  
Nikola Lipková ◽  
Soňa Javoreková ◽  
Jana Petrová ◽  
Jana Maková ◽  
...  

Inoculation of Streptomyces to improve oilseed rape (Brassica napus L.) yields and minimise the use of chemical fertilisers is a promising sustainable strategy. In this study, we isolated 72 actinobacterial strains from rhizosphere of oilseed rape and maize and from bulk soil for screening and characterising their antimicrobial activity. Nine promising strains, identified as Streptomyces sp. by morphology, physiological characteristics, and 16S rRNA gene sequencing, were selected for their plant growth-promoting traits and in planta experiments. The actinobacterial strains were positive for IAA production, siderophore production, and HCN production. In planta experiments were conducted by soaking the oilseed rape seeds in the actinobacterial suspension, followed by plant growth under controlled conditions in a cultivate chamber (22–28 °C, 8 h dark/16 h light, constant humidity 80%). We recorded root and shoot length (cm) and seedling fresh weight (g). For most of the abovementioned parameters, a significant enhancement was observed with strain KmiRC20A118 treatment. The length of the root increased by 53.14%, the shoot length increased by 65.6%, and the weight of the fresh plant by 60% compared to the control. The integrated application of PGPS (Plant Growth Promoting Streptomyces) from the rhizosphere of oilseed rape is a promising strategy to improve the growth of oilseed rape.


Sign in / Sign up

Export Citation Format

Share Document