w-overrings of w-Noetherian rings

2012 ◽  
Vol 49 (2) ◽  
pp. 200-205
Author(s):  
Huayu Yin ◽  
Youhua Chen

In this paper, we concern the w-analogue of Matijevic’s result. We show that if R is a w-Noetherian ring and T a w-overring of R such that T ⊆ Rwg. Then T has ACC on regular w-ideals.

1979 ◽  
Vol 20 (2) ◽  
pp. 125-128 ◽  
Author(s):  
A. W. Chatters

Throughout this note, rings are associative with identity element but are not necessarily commutative. Let R be a left and right Noetherian ring which has an Artinian (classical) quotient ring. It was shown by S. M. Ginn and P. B. Moss [2, Theorem 10] that there is a central idempotent element e of R such that eR is the largest Artinian ideal of R. We shall extend this result, using a different method of proof, to show that the idempotent e is also related to the socle of R/N (where N, throughout, denotes the largest nilpotent ideal of R) and to the intersection of all the principal right (or left) ideals of R generated by regular elements (i.e. by elements which are not zero-divisors). There are many examples of left and right Noetherian rings with Artinian quotient rings, e.g. commutative Noetherian rings in which all the associated primes of zero are minimal together with full or triangular matrix rings over such rings. It was shown by L. W. Small that if R is any left and right Noetherian ring then R has an Artinian quotient ring if and only if the regular elements of R are precisely the elements c of R such that c + N is a regular element of R/N (for further details and examples see [5] and [6]). By the largest Artinian ideal of R we mean the sum of all the Artinian right ideals of R, and it was shown by T. H. Lenagan in [3] that this coincides in any left and right Noetherian ring R with the sum of all the Artinian left ideals of R.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1532
Author(s):  
Dong Kyu Kim ◽  
Jung Wook Lim

Let Γ be a commutative monoid, R=⨁α∈ΓRα a Γ-graded ring and S a multiplicative subset of R0. We define R to be a graded S-Noetherian ring if every homogeneous ideal of R is S-finite. In this paper, we characterize when the ring R is a graded S-Noetherian ring. As a special case, we also determine when the semigroup ring is a graded S-Noetherian ring. Finally, we give an example of a graded S-Noetherian ring which is not an S-Noetherian ring.


2019 ◽  
Vol 19 (03) ◽  
pp. 2050050 ◽  
Author(s):  
Yanjiong Yang ◽  
Xiaoguang Yan

In this paper, we study the conditions under which a module is a strict Mittag–Leffler module over the class [Formula: see text] of Gorenstein injective modules. To this aim, we introduce the notion of [Formula: see text]-projective modules and prove that over noetherian rings, if a module can be expressed as the direct limit of finitely presented [Formula: see text]-projective modules, then it is a strict Mittag–Leffler module over [Formula: see text]. As applications, we prove that if [Formula: see text] is a two-sided noetherian ring, then [Formula: see text] is a covering class closed under pure submodules if and only if every injective module is strict Mittag–Leffler over [Formula: see text].


1991 ◽  
Vol 34 (1) ◽  
pp. 155-160 ◽  
Author(s):  
H. Ansari Toroghy ◽  
R. Y. Sharp

LetEbe an injective module over the commutative Noetherian ringA, and letabe an ideal ofA. TheA-module (0:Eα) has a secondary representation, and the finite set AttA(0:Eα) of its attached prime ideals can be formed. One of the main results of this note is that the sequence of sets (AttA(0:Eαn))n∈Nis ultimately constant. This result is analogous to a theorem of M. Brodmann that, ifMis a finitely generatedA-module, then the sequence of sets (AssA(M/αnM))n∈Nis ultimately constant.


2015 ◽  
Vol 67 (1) ◽  
pp. 28-54 ◽  
Author(s):  
Javad Asadollahi ◽  
Rasool Hafezi ◽  
Razieh Vahed

AbstractWe study bounded derived categories of the category of representations of infinite quivers over a ring R. In case R is a commutative noetherian ring with a dualising complex, we investigate an equivalence similar to Grothendieck duality for these categories, while a notion of dualising complex does not apply to them. The quivers we consider are left (resp. right) rooted quivers that are either noetherian or their opposite are noetherian. We also consider reflection functor and generalize a result of Happel to noetherian rings of finite global dimension, instead of fields.


2004 ◽  
Vol 2004 (46) ◽  
pp. 2473-2476
Author(s):  
O. D. Artemovych

We prove thatany rigid left Noetherian ring is either a domain or isomorphic to some ringℤpnof integers modulo a prime powerpn.


1997 ◽  
Vol 39 (3) ◽  
pp. 285-293 ◽  
Author(s):  
Ka Hin Leung ◽  
Shing Hing Man

AbstractIn this paper, we show that a commutative Noetherian ring which satisfies the radical formula must be of dimension at most one. From this we give a characterization of commutative Noetherian rings that satisfy the radical formula.


2019 ◽  
Vol 18 (05) ◽  
pp. 1950100
Author(s):  
Neil Epstein ◽  
Jay Shapiro

The notion of an Ohm–Rush algebra, and its associated content map, has connections with prime characteristic algebra, polynomial extensions, and the Ananyan–Hochster proof of Stillman’s conjecture. As further restrictions are placed (creating the increasingly more specialized notions of weak content, semicontent, content, and Gaussian algebras), the construction becomes more powerful. Here we settle the question in the affirmative over a Noetherian ring from [N. Epstein and J. Shapiro, The Ohm-Rush content function, J. Algebra Appl. 15(1) (2016) 1650009, 14 pp.] of whether a faithfully flat weak content algebra is semicontent (and over an Artinian ring of whether such an algebra is content), though both questions remain open in general. We show that in content algebra maps over Prüfer domains, heights are preserved and a dimension formula is satisfied. We show that an inclusion of nontrivial valuation domains is a content algebra if and only if the induced map on value groups is an isomorphism, and that such a map induces a homeomorphism on prime spectra. Examples are given throughout, including results that show the subtle role played by properties of transcendental field extensions.


1986 ◽  
Vol 99 (3) ◽  
pp. 447-456 ◽  
Author(s):  
Daniel Katz ◽  
L. J. Ratliff

If I and J are ideals in a Noetherian ring R, then I and J are projectively equivalent in case (Ii)a = (Jj)a for some positive integers i, j (where Ka denotes the integral closure in R of the ideal K) and the form ring F(R, I) of R with respect to I is the graded ring R/I ⊕ I/I2 ⊕ I2/I3 ⊕ …. These two concepts have played an important role in many research problems in commutative algebra, so they have been deeply studied and many of their properties have been discovered. In a recent paper [13] they were combined to show that a semi-local ring R is unmixed if and only if for every ideal J in R there exists a projectively equivalent ideal J in R such that every prime divisor of zero in F(R, J) has the same depth. It seems to us that results similar to this are interesting and potentially quite useful, so in this paper we prove several additional such theorems. Namely, it is shown that all ideals in all local rings have a projectively equivalent ideal whose form ring is fairly nice. Also, a characterization similar to the just mentioned result in [13] is given for the class of local rings whose completions have no embedded prime divisors of zero, and several analogous new characterizations are given for locally unmixed Noetherian rings. In particular, it is shown that if I is an ideal in an unmixed local ring R such that height(I) = l(I) (where l(I) denotes the analytic spread of I), then there exists a projectively equivalent ideal J in R such that Ass (F(R, J)) has exactly m elements, all minimal, where m is the number of minimal prime divisors of I (so if I is open, then F(R, J) has exactly one prime divisor of zero and is a locally unmixed Noetherian ring).


1992 ◽  
Vol 35 (3) ◽  
pp. 511-518
Author(s):  
H. Ansari Toroghy ◽  
R. Y. Sharp

Let E be an injective module over a commutative Noetherian ring A (with non-zero identity), and let a be an ideal of A. The submodule (0:Eα) of E has a secondary representation, and so we can form the finite set AttA(0:Eα) of its attached prime ideals. In [1, 3.1], we showed that the sequence of sets is ultimately constant; in [2], we introduced the integral closure a*(E) of α relative to E, and showed that is increasing and ultimately constant. In this paper, we prove that, if a contains an element r such that rE = E, then is ultimately constant, and we obtain information about its ultimate constant value.


Sign in / Sign up

Export Citation Format

Share Document