Applications of Stem Cells in Cancer Therapy: A Literature Based Studies

2020 ◽  
Vol 6 (2) ◽  
pp. 30
Author(s):  
Sara Javed ◽  
Fatima Ali ◽  
Nadia Wajid

Stem cells, are extraordinary kind of cells having unique ability of self-renewal, lineage differentiation and regeneration of damaged organ or parts of body. Stem cells experience asymmetric cell divisions, bringing forth two cells from each cell, one cell is alike to SCs in stemnessess whereas, other is differentiated into various lineage. These cells have been known for decades for their highest regenerative potential but their clinical applications remain delayed due to several unknown mechanisms of their actions. With the discovery of Cancer Stem Cells, it was described that understanding the stem cell biology is important for a proper way of cancer cure. Stem cells are successfully being transplanted in several clinical trials to treat the retinal disease, visual disorders including retinitis pigmentosa, Stargardt's disease, wound healing, skin regeneration and age related macular degeneration. Their role in cancer progression is the hot debate of research by cell biologists as understanding their role will help to remove the hurdles in cancer therapy.

2021 ◽  
Vol 11 (5) ◽  
pp. 321
Author(s):  
Kyoung Min Kim ◽  
Tae-Young Heo ◽  
Aesul Kim ◽  
Joohee Kim ◽  
Kyu Jin Han ◽  
...  

Artificial intelligence (AI)-based diagnostic tools have been accepted in ophthalmology. The use of retinal images, such as fundus photographs, is a promising approach for the development of AI-based diagnostic platforms. Retinal pathologies usually occur in a broad spectrum of eye diseases, including neovascular or dry age-related macular degeneration, epiretinal membrane, rhegmatogenous retinal detachment, retinitis pigmentosa, macular hole, retinal vein occlusions, and diabetic retinopathy. Here, we report a fundus image-based AI model for differential diagnosis of retinal diseases. We classified retinal images with three convolutional neural network models: ResNet50, VGG19, and Inception v3. Furthermore, the performance of several dense (fully connected) layers was compared. The prediction accuracy for diagnosis of nine classes of eight retinal diseases and normal control was 87.42% in the ResNet50 model, which added a dense layer with 128 nodes. Furthermore, our AI tool augments ophthalmologist’s performance in the diagnosis of retinal disease. These results suggested that the fundus image-based AI tool is applicable for the medical diagnosis process of retinal diseases.


2021 ◽  
Author(s):  
Yesa Yang ◽  
Hannah Dunbar

Endpoint development trials are underway across the spectrum of retinal disease. New validated endpoints are urgently required for the assessment of emerging gene therapies and in preparation for the arrival of novel therapeutics targeting early stages of common sight-threatening conditions such as age-related macular degeneration. Visual function measures are likely to be key candidates in this search. Over the last two decades, microperimetry has been used extensively to characterize functional vision in a wide range of retinal conditions, detecting subtle defects in retinal sensitivity that precede visual acuity loss and tracking disease progression over relatively short periods. Given these appealing features, microperimetry has already been adopted as an endpoint in interventional studies, including multicenter trials, on a modest scale. A review of its use to date shows a concurrent lack of consensus in test strategy and a wealth of innovative disease and treatment-specific metrics which may show promise as clinical trial endpoints. There are practical issues to consider, but these have not held back its popularity and it remains a widely used psychophysical test in research. Endpoint development trials will undoubtedly be key in understanding the validity of microperimetry as a clinical trial endpoint, but existing signs are promising.


2021 ◽  
Vol 10 (10) ◽  
pp. 2072
Author(s):  
Phoebe Lin ◽  
Scott M. McClintic ◽  
Urooba Nadeem ◽  
Dimitra Skondra

Blindness from age-related macular degeneration (AMD) is an escalating problem, yet AMD pathogenesis is incompletely understood and treatments are limited. The intestinal microbiota is highly influential in ocular and extraocular diseases with inflammatory components, such as AMD. This article reviews data supporting the role of the intestinal microbiota in AMD pathogenesis. Multiple groups have found an intestinal dysbiosis in advanced AMD. There is growing evidence that environmental factors associated with AMD progression potentially work through the intestinal microbiota. A high-fat diet in apo-E-/- mice exacerbated wet and dry AMD features, presumably through changes in the intestinal microbiome, though other independent mechanisms related to lipid metabolism are also likely at play. AREDS supplementation reversed some adverse intestinal microbial changes in AMD patients. Part of the mechanism of intestinal microbial effects on retinal disease progression is via microbiota-induced microglial activation. The microbiota are at the intersection of genetics and AMD. Higher genetic risk was associated with lower intestinal bacterial diversity in AMD. Microbiota-induced metabolite production and gene expression occur in pathways important in AMD pathogenesis. These studies suggest a crucial link between the intestinal microbiota and AMD pathogenesis, thus providing a novel potential therapeutic target. Thus, the need for large longitudinal studies in patients and germ-free or gnotobiotic animal models has never been more pressing.


Symmetry ◽  
2015 ◽  
Vol 7 (4) ◽  
pp. 2025-2037 ◽  
Author(s):  
Florian Murke ◽  
Symone Castro ◽  
Bernd Giebel ◽  
André Görgens

Sign in / Sign up

Export Citation Format

Share Document