Microscopy Study of Morphology of Electrospun Fiber-MOF Composites with Secondary Growth

MRS Advances ◽  
2017 ◽  
Vol 2 (46) ◽  
pp. 2457-2463 ◽  
Author(s):  
Mitchell R. Armstrong ◽  
Bohan Shan ◽  
Bin Mu

ABSTRACTMicroscopy studies were performed over a series of metal-organic-framework (MOF) imbedded electrospun fibers. Analysis of as-spun fibers revealed five different MOF particle-fiber imbedded morphologies including complete particle encasement, over-filled, surface-bound, welded, and agglomerated. To mitigate issues with fiber breakup during electrospinning (ES) due to MOF particle incorporation, secondary growth method was used. Secondary growth was performed on both Matrimid and polysulfone fibers impregnated with a MOF, ZIF-8, in either water or methanol solvents. Results show that when water was used, crystal formation was limited to formation on the top layer of the fiber mat due to hydrophobicity. When methanol was used in place of water, MOF crystal growth occurred in a patchwise manner, where crystals grow across fibers and span the entire fiber mat. From this work, it was determined that successful secondary growth of MOF imbedded electrospun fibers can be accomplished when particles are either highly exposed along the fiber surface for adequate exposure to solvent, or the solvent used promotes reactant penetration into the polymer to allow access to the seeded MOF crystals.

Author(s):  
Wahiduzzaman ◽  
Mujibur Khan ◽  
Saheem Absar ◽  
Spencer Harp ◽  
Kyle Edwards ◽  
...  

Crystalline particles known as Metal Organic Frameworks (MOF’s) are known for their large surface area and high adsorption and storage capacity for CO2 gas. Electrospun nanofibers are considered as ideal substrates for synthesizing the MOF particles on the fiber surface. In this project, Polyacrylonitrile (PAN) and a Cu-based MOF known as HKUST-1 were selected as substrate fibers and adsorbent particles respectively. A precursor solution of PAN polymer hybridized with HKUST-1 particles dissolved in Dimehtylformamide (DMF) is used as the primary component solution for electrospinning. SEM images of the electrospun fibers showed small MOF particles formation into the fiber structure. A secondary solvothermal process of MOF particles growing on the fibers was then executed to increase the amount of MOF particles for effectual gas adsorption. The secondary process consists of multiple growth cycles and SEM images showed uniform distribution of porous MOF particles of 2–3μm in size on the fiber surface. EDS report of the fiber confirmed the presence of MOF particles through identification of characteristic Copper elemental peaks of HKUST-1. Thermogravitmetric analysis (TGA) of HKUST-1 doped PAN fiber displayed 32% of total weight loss between 180°C and 350°C thus proving the as-synthesized MOF particles are thermally stable within the mentioned temperature range. A comparative IR spectroscopic result between the gas-treated and gas-untreated fiber samples showed the presence of characteristic peak in the vicinity of 2300 and 2400cm−1 which corroborates the assertion of adsorption of CO2 on the system. Further step involved is to investigate the gas adsorption capacity of the filter system in an experimental test bench. Non-dispersive Infrared (NDIR) CO2 sensors will be used at the gas inlet and outlet parts to measure the concentration of CO2 and determine the amount of gas uptake by the filter system.


Crystals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 432 ◽  
Author(s):  
Yun-hui Si ◽  
Ya-yun Li ◽  
Yu Xia ◽  
Shao-ke Shang ◽  
Xin-bo Xiong ◽  
...  

In this work, a novel metal-organic framework (MOF) and BiVO4 (BVO) composite photocatalyst was successfully synthesized by an in-situ growth method. The characterization of obtained samples was done by X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, N2 adsorption, and photoluminescence spectroscopy. The photocatalytic performance of ZIF-8@BiVO4 composite was evaluated by the degradation of methylene blue (MB) under simulated visible light irradiation. Compared with the mixture of BVO and ZIF-8, the composite photocatalyst exhibited superior photodegradation efficiency, which could be attributed to the synergistic effect between BVO and ZIF-8. The reduced recombination of photogenerated electrons and holes was considered to be an important reason for the enhancement of photocatalytic performance. This design demonstrates a rational method to improve the photocatalytic performance by combining photocatalysts with MOFs.


Nanomaterials ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 676 ◽  
Author(s):  
Yan Huang ◽  
Cheng-an Tao ◽  
Rui Chen ◽  
Liping Sheng ◽  
Jianfang Wang

Homogeneous metal-organic frameworks (MOFs)-based optical thin films have attracted increasing attention, since they can potentially be used as active components in optical/opt-electrical devices, and how to fabricate MOF thin films with high quality is the premise of practically using them. Herein, five fabrication methods of MOF films are systematically investigated and compared from the aspects of appearance, reflectivity, micro-morphology, surface roughness, and optical properties of the films. The famous robust Zr-based MOF, UiO-66 (UiO = University of Oslo) is chosen as a model, and the five methods are spin-coating, dip-coating, self-assembly, direct growth, and the stepwise layer by layer growth method. This study provides fundamental support for the application of MOFs in the optical field.


Author(s):  
Trang Thị Thu Nguyễn ◽  
Ý Thị Đặng ◽  
Linh Hồ Thùy Nguyễn ◽  
Hạnh Thị Kiều Tạ ◽  
Thắng Bách Phan ◽  
...  

Highly porous and biocompatible nano metal-organic framework materials (NMOF) are increasingly being applied in biomedical fields, especially as pharmaceutical adsorbent materials. Curcumin, found in turmeric, is a widely common herb in Eastern which has recently used in many applications in supporting cancer treatment. In the synthesis of MOF materials, the use of surfactants allows to control the morphology, the process of crystal formation and development and particle size of the material. In this research, MIL-100 (Fe) nanomaterials were successfully synthesized at room temperature in the presence of polyvinylpyrrolidone surfactant (PVP) to control the nanoparticle size about 50 nm in size. The synthesized MOF structure and properties were analyzed by using characterization techniques, including powder X-ray diffraction (PXRD), fourier-transform infrared (FT-IR), thermal gravimetric analyses (TGA) and nitrogen isothermal adsorption-desorption at 77 K. The characterization results showed that MIL-100 (Fe) nanomaterials have high crystallinity, large surface area, and highly thermal stability. However, its particle size is very small, only about 50 nm. Curcumin adsorption studies exhibited that this material had the ability to adsorb curcumin with an adsorption capacity up to 64.36 mg g-1. Kinetic and mechanism studies revealed that curcumin adsorption followed the pseudo-second model. In addition, thermodynamic studies proved that this was a spontaneous and exothermic adsorption process.


2021 ◽  
Vol 120 ◽  
pp. 111738
Author(s):  
Özge Toprak ◽  
Berna Topuz ◽  
Yanad Abou Monsef ◽  
Çağdaş Oto ◽  
Kaan Orhan ◽  
...  

NANO ◽  
2020 ◽  
Vol 15 (01) ◽  
pp. 2050012
Author(s):  
Wenming Zhang ◽  
Jintao Chen ◽  
Xiaorui Li ◽  
Jiaqing Zhang ◽  
Yanan Li ◽  
...  

Cu-N-C electrocatalyst was successfully prepared with Cu-BTC and polyacrylonitrile as templates by electrospinning and in-situ growth method. The effect of various [Formula: see text]-doped content on the electrochemical performance of the catalyst were investigated and the Cu-N-C-0.25 exhibited the best OER/ORR catalytic activities. When it was applied to the cathode of the zinc-air batteries, the power density of Cu-N-C-0.25 was 209.1[Formula: see text]mW[Formula: see text]cm[Formula: see text], which exceeded that of the commercial Pt/C[Formula: see text]IrO2 hybrid catalyst (157[Formula: see text]mW[Formula: see text]cm[Formula: see text]). The excellent electrochemical performance may be attributed to large number of active sites and high specific surface area on Cu-N-C electrocatalyst. It will be a promising alternative to precious metal catalysts containing Pt, Ir or Ru and their oxides.


Sign in / Sign up

Export Citation Format

Share Document