scholarly journals Study of Curcumin Adsorption of Nano Fe-based Metal-Organic Framework

Author(s):  
Trang Thị Thu Nguyễn ◽  
Ý Thị Đặng ◽  
Linh Hồ Thùy Nguyễn ◽  
Hạnh Thị Kiều Tạ ◽  
Thắng Bách Phan ◽  
...  

Highly porous and biocompatible nano metal-organic framework materials (NMOF) are increasingly being applied in biomedical fields, especially as pharmaceutical adsorbent materials. Curcumin, found in turmeric, is a widely common herb in Eastern which has recently used in many applications in supporting cancer treatment. In the synthesis of MOF materials, the use of surfactants allows to control the morphology, the process of crystal formation and development and particle size of the material. In this research, MIL-100 (Fe) nanomaterials were successfully synthesized at room temperature in the presence of polyvinylpyrrolidone surfactant (PVP) to control the nanoparticle size about 50 nm in size. The synthesized MOF structure and properties were analyzed by using characterization techniques, including powder X-ray diffraction (PXRD), fourier-transform infrared (FT-IR), thermal gravimetric analyses (TGA) and nitrogen isothermal adsorption-desorption at 77 K. The characterization results showed that MIL-100 (Fe) nanomaterials have high crystallinity, large surface area, and highly thermal stability. However, its particle size is very small, only about 50 nm. Curcumin adsorption studies exhibited that this material had the ability to adsorb curcumin with an adsorption capacity up to 64.36 mg g-1. Kinetic and mechanism studies revealed that curcumin adsorption followed the pseudo-second model. In addition, thermodynamic studies proved that this was a spontaneous and exothermic adsorption process.

2021 ◽  
Vol 35 (1) ◽  
pp. 119-128
Author(s):  
S. Iram ◽  
T. Khurshid ◽  
S. Latif ◽  
M. Imran ◽  
F. Kanwal ◽  
...  

Metal organic frameworks are formed by the three-dimensional linkage of metal cores and organic linkers. In this work, bismuth-based metal organic framework (Bi-MOF) has been synthesized by using 5-hydroxyisophthalic acid (H2HIA) as linker via hydrothermal method. The said MOF was structurally characterized by UV/Vis, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), 1H NMR, energy dispersive spectroscopy (EDS), thermogravimetric analysis (TGA) and X-ray diffraction technique. This MOF showed highly porous structure with surface area 1096 m2/g as determined by BET analysis. A model batch adsorption experiment was performed to evaluate the efficiency of methylene blue (MB) dye removal from aqueous media. It was found that monolayer adsorption capacity calculated from the Langmuir isotherm was 0.6240 mg/g. Bi-MOF was also screened for its antibacterial and luminescent behavior.                     KEY WORDS: Bismuth, Metal-organic Frameworks, Luminescence, Sorption   Bull. Chem. Soc. Ethiop. 2021, 35(1), 119-128. DOI: https://dx.doi.org/10.4314/bcse.v35i1.10


2020 ◽  
Vol 10 (13) ◽  
pp. 4563
Author(s):  
Cory Forsyth ◽  
Tyler Taras ◽  
Adam Johnson ◽  
Jessica Zagari ◽  
Crystal Collado ◽  
...  

This research explores the application of surfactants as green solvents for the rapid microwave synthesis of metal-organic framework (MOF) materials. Lead, copper, and iron metal-organic framework materials were synthesized using surfactant-thermal microwave synthesis. The MOF materials were characterized by powder X-ray diffraction, infrared spectroscopy, scanning electron microscopy, and thermogravimetric analysis. With the exception of the iron MOF, which was expected to be amorphous, the MOF materials are crystalline, though generally exhibiting smaller crystals than those achieved with traditional solvothermal synthesis. This green synthetic method reduced synthesis time and reduced the use of traditional organic solvents as the reaction media.


2021 ◽  
Vol 10 (2) ◽  
pp. 94-98
Author(s):  
Hue Dang Thi Minh ◽  
Chau Tran Van ◽  
Giang Hoang Thi Linh ◽  
Luyen Tran Thi ◽  
Chinh Huynh Dang

Composite materials MIL-53(Fe)/Fe3O4 have been successfully synthesized on the basis of MIL-53 metal organic framework materials by hydrothermal method. Material characteristics were studied through XRD, SEM methods. The material has good adsorption capacity of the Congo Red pigment. The Congo Red adsorption activity of the composite material was investigated. The results showed that the adsorption efficiency of Congo Red of MIL-53(Fe)/Fe3O4 reached 98.89% after only 5 minutes, with the concentration of 2.227 mg/l in Congo red solution. The Congo Red adsorption process of MIL-53 (Fe)/Fe3O4 follows the Freundlich isothermal adsorption model.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5773
Author(s):  
Aasif Helal ◽  
Muhammed Naeem ◽  
Mohammed Fettouhi ◽  
Md. Hasan Zahir

In this work, we prepared a fluorescein hydrazide-appended Ni(MOF) (Metal–Organic Framework) [Ni3(BTC)2(H2O)3].(DMF)3(H2O)3 composite, FH@Ni(MOF). This composite was well-characterized by PXRD (powder X-ray diffraction), FT-IR (Fourier transform infrared spectroscopy), N2 adsorption isotherm, TGA (thermogravimetric analysis), XPS (X-ray photoelectron spectroscopy), and FESEM (field emission scanning electron microscopy). This composite was then tested with different heavy metals and was found to act as a highly selective and sensitive optical sensor for the Hg2+ ion. It was found that the aqueous emulsion of this composite produces a new peak in absorption at 583 nm, with a chromogenic change to a pink color visible to the naked eye upon binding with Hg2+ ions. In emission, it enhances fluorescence with a fluorogenic change to green fluorescence upon complexation with the Hg2+ ion. The binding constant was found to be 9.4 × 105 M−1, with a detection limit of 0.02 μM or 5 ppb. This sensor was also found to be reversible and could be used for seven consecutive cycles. It was also tested for Hg2+ ion detection in practical water samples from ground water, tap water, and drinking water.


2020 ◽  
Vol 20 (5) ◽  
pp. 3019-3024 ◽  
Author(s):  
Juan P. Vizuet ◽  
Abigail L. Lewis ◽  
Gregory T. McCandless ◽  
Kenneth J. Balkus

There is growing interest in Holmium carriers for radiotherapeutic applications. In this work, a holmium-based metal-organic framework (MOF) using the 4,4′-biphenyldicarboxylic acid (H2BPDC) linker was synthesized and characterized to explore its potential as a radiotherapeutic carrier. The 3D MOF [Ho(BPDC)2]·(CH3)2NH2 was characterized by single crystal X-ray diffraction, FTIR, TGA and PXRD. A challenge to overcome in lanthanide-based MOFs is the deformation or collapse of the framework that can occur after evacuation of the pores. This structure displays high thermal stability and no collapse was observed when the molecules confined in the pores were removed. The coordination around the holmium center (CN = 8) is the key to this stability since only the organic linker and no solvent molecules coordinate to the metallic center. The porosity of the material was confirmed by high-pressure carbon dioxide (CO2) adsorption–desorption analysis. The stability of the MOF, its holmium content (28 wt%) and its porosity are features that make this material a potential holmium carrier for radiotherapeutic applications.


2017 ◽  
Vol 126 (1C) ◽  
pp. 107
Author(s):  
Tran Vinh Thien

<p>In the present paper, a comparative study on the synthesis of metal organic framework-199 by microwave and solvolthermal method was demonstrated.<strong> </strong>The obtained materials were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), nitrogen adsorption/desorption isotherms and thermal gravity (TG). The microwave synthesis of MOF-199 has been compared to its conventional hydrothermal synthesis. It is found that by using microwave synthesis MOF-199 can be obtained in a much shorter synthesis time with improved yield and textural properties. It is supposed that the microwave energy emitted fast and uniformly, creating nuclei through the solution which quickly grew to crystals and both the nucleation and crystallization steps were accelerated. These make the microwave synthesis advantages over solvolthermal synthesis.<strong></strong></p>


2008 ◽  
Vol 73 (1) ◽  
pp. 24-31
Author(s):  
Dayu Wu ◽  
Genhua Wu ◽  
Wei Huang ◽  
Zhuqing Wang

The compound [Cd(4,4'-bpy)2(H2O)2](ClO4)2·(L)2 was obtained by the reaction of Cd(ClO4)2, bis(1-pyrazinylethylidene)hydrazine (L) and 4,4'-bipyridine in aqueous MeOH. Single-crystal X-ray diffraction has revealed its two-dimensional metal-organic framework. The 2-D layers superpose on each other, giving a channel structure. The square planar grids consist of two pairs of shared edges with Cd(II) ion and a 4,4'-bipyridine molecule each vertex and side, respectively. The square cavity has a dimension of 11.817 × 11.781 Å. Two guest molecules of bis(1-pyrazinylethylidene)hydrazine are clathrated in every hydrophobic host cavity, being further stabilized by π-π stacking and hydrogen bonding. The results suggest that the hydrazine molecules present in the network serve as structure-directing templates in the formation of crystal structures.


Sign in / Sign up

Export Citation Format

Share Document