scholarly journals Nanostructured interfaces between photosynthetic bacterial Reaction Center and Silicon electrodes

MRS Advances ◽  
2019 ◽  
Vol 4 (31-32) ◽  
pp. 1741-1748 ◽  
Author(s):  
Marco Lo Presti ◽  
Danilo Vona ◽  
Gabriella Leone ◽  
Giorgio Rizzo ◽  
Roberta Ragni ◽  
...  

ABSTRACT:Optimizing interfaces between photosynthetic natural photoconverters, like photosynthetic bacterial Reaction Centers (RCs) and electrode surfaces represents a challenge in the progress of bio-optoelectronic devices. The features of the surfaces may result detrimental for the tertiary and quaternary structures of the RC, even resulting in the denaturation of the enzyme. Functional surfaces possessing both confinement capability and conductive features able to preserve the conformation of the biomolecule and its bioelectronic behaviours are highly needed. In this work, the RC is adsorbed on diatomaceous silica and plasma treated hydrophobic silicon based materials. Both the materials are demonstrated to be able to preserve and enhance the RC photoconverting activity. In particular, we evaluate the functioning of isolated bacterial RC interacting with flat pSi electrode through two nanotextured interfaces designed to address the RC: a thin conductive silicon film nanotextured in pillars via plasma treatment, and a cast film of nanostructured dielectric biosilica obtained from diatomaceous earth. The characterization of these interfaces, together with the RC photocurrent production measurements, pave the way to new generation RC based bio-devices for photocurrent investigation.

2004 ◽  
Vol 108 (30) ◽  
pp. 11150-11156 ◽  
Author(s):  
L. M. Utschig ◽  
A. V. Astashkin ◽  
A. M. Raitsimring ◽  
M. C. Thurnauer ◽  
O. G. Poluektov

2020 ◽  
Vol 11 (3) ◽  
pp. 364-364
Author(s):  
Maciej Ratynski ◽  
Bartosz Hamankiewicz ◽  
Michał Krajewski ◽  
Maciej Boczar ◽  
Dominika A. Buchberger ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1513
Author(s):  
Yuezhou Wei ◽  
Khalid A. M. Salih ◽  
Mohammed F. Hamza ◽  
Toyohisa Fujita ◽  
Enrique Rodríguez-Castellón ◽  
...  

High-tech applications require increasing amounts of rare earth elements (REE). Their recovery from low-grade minerals and their recycling from secondary sources (as waste materials) are of critical importance. There is increasing attention paid to the development of new sorbents for REE recovery from dilute solutions. A new generation of composite sorbents based on brown algal biomass (alginate) and polyethylenimine (PEI) was recently developed (ALPEI hydrogel beads). The phosphorylation of the beads strongly improves the affinity of the sorbents for REEs (such as La and Tb): by 4.5 to 6.9 times compared with raw beads. The synthesis procedure (epicholorhydrin-activation, phosphorylation and de-esterification) is investigated by XPS and FTIR for characterizing the grafting route but also for interpreting the binding mechanism (contribution of N-bearing from PEI, O-bearing from alginate and P-bearing groups). Metal ions can be readily eluted using an acidic calcium chloride solution, which regenerates the sorbent: the FTIR spectra are hardly changed after five successive cycles of sorption and desorption. The materials are also characterized by elemental, textural and thermogravimetric analyses. The phosphorylation of ALPEI beads by this new method opens promising perspectives for the recovery of these strategic metals from mild acid solutions (i.e., pH ~ 4).


Sign in / Sign up

Export Citation Format

Share Document