Ni, Pd, and Pt on GaAs: A comparative study of interfacial structures, compositions, and reacted film morphologies

1987 ◽  
Vol 2 (2) ◽  
pp. 262-275 ◽  
Author(s):  
T. Sands ◽  
V. G. Keramidas ◽  
A. J. Yu ◽  
K-M. Yu ◽  
R. Gronsky ◽  
...  

The reactions between (100) GaAs and the near-noble metals Ni, Pd, and Pt have been investigated by application of high-resolution transmission electron microscopy (TEM), energy-dispersive analysis of x-rays in the scanning TEM and Rutherford backscattering spectrometry. Emphasis is placed on the evolution of the phase distributions, film compositions, and interface morphologies during annealing at temperatures up to 480°C. The first phase in the Ni/GaAs reaction is shown to have the nominal composition Ni3GaAs. Ternary phases of the type PdxGaAs are also found to be the dominant products of the Pd/GaAs reaction. Conversely, only binary phases result from the Pt/GaAs reaction. These observations are used to construct isothermal sections of the M-Ga-As thin-film phase diagrams. The behavior of a thin (1–2 nm) native oxide-hydrocarbon layer during the Ni/GaAs, Pd/GaAs, and Pt/GaAs reactions is also investigated. Only the Ni/GaAs reaction is noticeably impeded in some regions by this intervening layer. In contrast, the Pd/GaAs and Pt/GaAs reactions tend to mechanically disperse the native oxide layers.

2013 ◽  
Vol 665 ◽  
pp. 297-301
Author(s):  
Kiran Kumar Patel ◽  
K.D. Patel ◽  
Mayur Patel ◽  
Keyur S. Hingarajiya ◽  
V.M. Pathak

Tin Selenide thin films have been deposited using thermal evaporation technique on chemically and ultrasonically cleaned glass substrates. The stoichiometry of deposited films has been studied using Energy Dispersive Analysis of X-rays (EDAX).The orthorhombic structure and polycrystalline nature of the films were also revealed by X-ray diffraction (XRD) and Transmission Electron Microscopy (TEM) analysis. The well characterized thin film of SnSe was then used to fabricate Ag/p-SnSe/In Schottky barrier diode. The I-V characteristics of prepared diodes have been investigated over the temperature range of 303 K to 393 K. The forward biased I-V characteristics of prepared structure has been analyzed using TE theory and different device parameters have been evaluated and discussed in present paper. The Richardson constant was also determined from the conventional Richardson plot and it is found close to the reported value.


2005 ◽  
Vol 863 ◽  
Author(s):  
Jian Yu ◽  
Yinmin Wang ◽  
Arthur W. Haberl ◽  
Hassa Bakhru ◽  
Jian-Qiang Lu ◽  
...  

AbstractThree-dimensional (3D) wafer-level integration is receiving increased attention with various wafer bonding approaches being evaluated. Recently, we explored an alternative lowtemperature Ti/Si-based wafer bonding, in which an oxidized silicon wafer was successfully bonded with a prime silicon wafer at 400°C using 30 nm sputtered Ti as adhesive. The bonded pairs show excellent bonding uniformity and mechanical integrity. Rutherford backscattering spectrometry (RBS) was applied to confirm the interdiffusion occurred in the interlayer. The bonding interface was examined by high-resolution transmission electron microscopy (HRTEM) assisted with electron energy loss spectroscopy (EELS) elemental mapping and energy dispersive X-ray spectroscopy (EDX). Characterization of the bonding interface indicates the strong adhesion achieved is attributed to an amorphous layer formed by interdiffusion of Si and oxygen into Ti interlayer and the unique ability to reduce native oxide (SiO2) by Ti even at low temperatures.


2006 ◽  
Vol 05 (02n03) ◽  
pp. 245-251 ◽  
Author(s):  
JUNPING LI ◽  
YAO XU ◽  
DONG WU ◽  
YUHAN SUN

ZnS nanofibers with lamellar mesostructure could be built up from in situ generated ZnS precursors via hydrothermal routes using neutral n-alkylamines as structure-directing template and ethylene diamine tetraacetic acid (EDTA) as stabilizer. The morphology and structure of the obtained products were thoroughly investigated via scanning electron microscope (SEM), energy dispersive analysis of X-rays (EDX), transmission electron microscope (TEM), X-ray powder diffraction (XRD) and thermal analyses. HRTEM and XRD results revealed that the so-produced nanofibers were lamellar mesostructure and its framework was built of crystalline wurtzite ZnS . It was also found that the distance between the layers was proportional to the chain length of the alkylamine. The UV-visible absorption spectrum showed that the nanofibers exhibited strong quantum-confined effect with a blue shift in the band gap. Finally, a probable mechanism for the assembly of the nanofibers was also proposed.


1990 ◽  
Vol 205 ◽  
Author(s):  
Gillian E. Winters ◽  
K.M. Unruh ◽  
C.P. Swann

AbstractSputter deposited films of amorphous NixZr100-x, have been prepared over a wide and continuous range of compositions between x=20 and x=90 atomic percent Ni on liquid nitrogen cooled and room temperature substrates. These films have been characterized by xray and electron diffraction, transmission electron microscopy, and Rutherford backscattering spectrometry. The crystallization behavior of these films has been systematically studied by differential scanning calorimetry and compared with earlier measurements on amorphous liquid quenched alloys. Systematic differences were found between the thermal stability of amorphous alloys of the same nominal composition prepared at different substrate temperatures. Larger differences exist between vapor deposited amorphous films and liquid quenched ribbons.


2001 ◽  
Vol 697 ◽  
Author(s):  
C. L. Muhlstein ◽  
E. A. Stach ◽  
R. O. Ritchie

Abstract2-μm thick structural films of polycrystalline silicon are shown to display “metal-like” stress-life fatigue behavior in room air, with failures occurring after > 1011 cycles at stresses as low as half the fracture strength. Using in situ measurements of the specimen compliance and transmission electron microscopy to characterize such damage, the mechanism of thin-film silicon fatigue is deduced to be sequential oxidation and moisture-assisted cracking in the native SiO2 layer. This mechanism can also occur in bulk silicon but it is only relevant in thin films where the critical crack size for catastrophic failure can be exceeded within the oxide layer. The fatigue susceptibility of thin-film silicon is shown to be suppressed by alkene-based self-assembled monolayer coatings that prevent the formation of the native oxide.


2001 ◽  
Vol 704 ◽  
Author(s):  
Biman Das ◽  
Mats Graeffe ◽  
Alicia Toscano ◽  
Chris Brancewicz ◽  
Don H. Rasmussen

AbstractSodium aluminate liquor was diluted and neutralized with water and oxalic acid in the presence of surface-active polymers polyvinylpyrrolidone (PVP), polyvinyl alcohol (PVA) and sodium carboxymethylcellulose (NaCMC). Dynamic light scattering experiments showed that the final precipitate had diameters between 80 – 300 nm when precipitated in the presence of PVP, and 600 – 800 nm when precipitated in the presence of NaCMC. The initial sols prepared using oxalic acid without surfactant had diameters of 200 – 300 nm. Scanning Electron Microscopy, SEM, Energy Dispersive Analysis by X-rays, EDAX, and X-ray diffraction were used for imaging, chemical and structural analysis of the final dialyzed particles. Transmission Electron Microcopy, TEM, images of the sols trapped and dried between nitrocellulose membranes showed that the initial particles were nearly spherical and bimodal in particle size. Larger particles had diameter of about 176 nm but were not pure solid alumina. A small fraction of initial particles had diameters much smaller than 176 nm. The discrepancies between initial and final precipitates indicate a complex precipitation pathway.


2001 ◽  
Vol 687 ◽  
Author(s):  
C. L. Muhlstein ◽  
E. A. Stach ◽  
R. O. Ritchie

Abstract2-νm thick structural films of polycrystalline silicon are shown to display “metal-like” stress- life fatigue behavior in room air, with failures occurring after >1011 cycles at stresses as low as half the fracture strength. Using in situ measurements of the specimen compliance and transmission electron microscopy to characterize such damage, the mechanism of thin-film silicon fatigue is deduced to be sequential oxidation and moisture-assisted cracking in the native SiO2 layer. This mechanism can also occur in bulk silicon but it is only relevant in thin films where the critical crack size for catastrophic failure can be exceeded within the oxide layer. The fatigue susceptibility of thin-film silicon is shown to be suppressed by alkene-based self- assembled monolayer coatings that prevent the formation of the native oxide.


Sign in / Sign up

Export Citation Format

Share Document