Reduced-pressure MOCVD of highly crystalline BaTiO3 thin films

1992 ◽  
Vol 7 (3) ◽  
pp. 542-545 ◽  
Author(s):  
Peter C. Van Buskirk ◽  
Robin Gardiner ◽  
Peter S. Kirlin ◽  
Steven Nutt

Epitaxial BaTi3 films have been grown on NdGaO3 [100] substrates by reduced pressure MOCVD for the first time. The substrate temperature was 1000 °C and the total pressure was 4 Torr. Electron and x-ray diffraction measurements indicate highly textured, single phase films on the NdGaO3 substrate which are predominantly [100], with [110] also present. TEM and selected area electron diffraction (SAED) indicate two specific orientational relationships between the [110] and the [001] diffraction patterns.

Author(s):  
H. Brigitte Krause ◽  
Donald L. Gibbon

AbstractSelected-area electron-diffraction patterns and x-ray diffraction powder patterns were taken of crushed single crystals of Pb


Author(s):  
А.В. Павленко ◽  
Д.В. Стрюков ◽  
Н.В. Тер-Оганесян

For the first time, thin films of NaNbO3 on a MgO(001) substrate, on which a SrRuO3 layer was previously deposited, were obtained by RF cathode sputtering in an oxygen atmosphere. According to x-ray diffraction analysis the films are single phase and single-crystalline. The lattice parameters in the tetragonal approximation for the NaNbO3 and SrRuO3 layers were: с(NaNbO3) = 0.3940(1) nm, a(NaNbO3) = 0.389(1) nm; с(SrRuO3) = 0.4004(1) nm, a(SrRuO3) = 0.392(3) nm. The unit cell deformation for NaNbO3 was ε33 = 0.007, ε11 = 0.002. Dielectric and piezoelectric measurements indicate that the films are in a ferroelectric state.


1990 ◽  
Vol 202 ◽  
Author(s):  
Peter C. Van Buskirk ◽  
Robin Gardiner ◽  
Peter S Kirlin

ABSTRACTPolcrystalline BaTiO3 films have been grown on NdGaO3 [100], SrTiO3 [100] and Si [100] substrates by reduced pressure CVD. The substrate temperature was 1000°C and the total pressure during growth was 4 torr. X-ray diffraction measurements indicate highly textured films on the NdGa03 substrate. The orientation was predominantly [100], accompanied by small quantities of various TiO crystalline phases.


2014 ◽  
Vol 47 (3) ◽  
pp. 879-886 ◽  
Author(s):  
He Zheng ◽  
Jianbo Wang ◽  
Zhongling Xu ◽  
Jianian Gui

A previous transmission electron microscopy (TEM) analysis revealed the existence of monoclinic Li2MnO3in the lithium-rich and oxygen-deficient Li1.07Mn1.93O4−δpowder. Interestingly, the monoclinic phase exhibits different nanoscale lamellar variants involving a rotation of the stacking direction by 120 or 240° along the pseudo-threefold axis,i.e.the [103]M//[111]C(M and C denote the monoclinic and cubic phases, respectively) zone axis. Here, a theoretical X-ray diffraction (XRD) study of Li2MnO3employing theDIFFaXprogram is presented. It is found that, with the occurrence of different stacking configurations, the characteristic superstructure reflections with 2θ between 20 and 35° (Cu Kα) in the XRD pattern become more and more broadened with the increasing degree of stacking disorder, indicating that XRD may fall short in detecting the presence of the monoclinic Li2MnO3phase. Moreover, selective peak asymmetry appears when the stacking sequence becomes extremely disordered. Further selected-area electron diffraction and theoretical neutron diffraction investigation may clarify the similar ambiguity concerning the crystal phases of other structurally related compound cathode materials for lithium-ion batteries (e.g.LiNi1/2Mn1/2O2, LiNi1/3Co1/3Mn1/3O2).


Author(s):  
Robert M. Glaeser ◽  
David W. Deamer

In the investigation of the molecular organization of cell membranes it is often supposed that lipid molecules are arranged in a bimolecular film. X-ray diffraction data obtained in a direction perpendicular to the plane of suitably layered membrane systems have generally been interpreted in accord with such a model of the membrane structure. The present studies were begun in order to determine whether selected area electron diffraction would provide a tool of sufficient sensitivity to permit investigation of the degree of intermolecular order within lipid films. The ultimate objective would then be to apply the method to single fragments of cell membrane material in order to obtain data complementary to the transverse data obtainable by x-ray diffraction.


Author(s):  
D J H Cockayne ◽  
D R McKenzie

The study of amorphous and polycrystalline materials by obtaining radial density functions G(r) from X-ray or neutron diffraction patterns is a well-developed technique. We have developed a method for carrying out the same technique using electron diffraction in a standard TEM. It has the advantage that studies can be made of thin films, and on regions of specimen too small for X-ray and neutron studies. As well, it can be used to obtain nearest neighbour distances and coordination numbers from the same region of specimen from which HREM, EDS and EELS data is obtained.The reduction of the scattered intensity I(s) (s = 2sinθ/λ ) to the radial density function, G(r), assumes single and elastic scattering. For good resolution in r, data must be collected to high s. Previous work in this field includes pioneering experiments by Grigson and by Graczyk and Moss. In our work, the electron diffraction pattern from an amorphous or polycrystalline thin film is scanned across the entrance aperture to a PEELS fitted to a conventional TEM, using a ramp applied to the post specimen scan coils. The elastically scattered intensity I(s) is obtained by selecting the elastically scattered electrons with the PEELS, and collecting directly into the MCA. Figure 1 shows examples of I(s) collected from two thin ZrN films, one polycrystalline and one amorphous, prepared by evaporation while under nitrogen ion bombardment.


Author(s):  
Tianlei Ma ◽  
Marek Nikiel ◽  
Andrew G. Thomas ◽  
Mohamed Missous ◽  
David J. Lewis

AbstractIn this report, we prepared transparent and conducting undoped and molybdenum-doped tin oxide (Mo–SnO2) thin films by aerosol-assisted chemical vapour deposition (AACVD). The relationship between the precursor concentration in the feed and in the resulting films was studied by energy-dispersive X-ray spectroscopy, suggesting that the efficiency of doping is quantitative and that this method could potentially impart exquisite control over dopant levels. All SnO2 films were in tetragonal structure as confirmed by powder X-ray diffraction measurements. X-ray photoelectron spectroscopy characterisation indicated for the first time that Mo ions were in mixed valence states of Mo(VI) and Mo(V) on the surface. Incorporation of Mo6+ resulted in the lowest resistivity of $$7.3 \times 10^{{ - 3}} \Omega \,{\text{cm}}$$ 7.3 × 10 - 3 Ω cm , compared to pure SnO2 films with resistivities of $$4.3\left( 0 \right) \times 10^{{ - 2}} \Omega \,{\text{cm}}$$ 4.3 0 × 10 - 2 Ω cm . Meanwhile, a high transmittance of 83% in the visible light range was also acquired. This work presents a comprehensive investigation into impact of Mo doping on SnO2 films synthesised by AACVD for the first time and establishes the potential for scalable deposition of SnO2:Mo thin films in TCO manufacturing. Graphical abstract


Surfaces ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 106-114
Author(s):  
Yannick Hermans ◽  
Faraz Mehmood ◽  
Kerstin Lakus-Wollny ◽  
Jan P. Hofmann ◽  
Thomas Mayer ◽  
...  

Thin films of ZnWO4, a promising photocatalytic and scintillator material, were deposited for the first time using a reactive dual magnetron sputtering procedure. A ZnO target was operated using an RF signal, and a W target was operated using a DC signal. The power on the ZnO target was changed so that it would match the sputtering rate of the W target operated at 25 W. The effects of the process parameters were characterized using optical spectroscopy, X-ray diffraction, and scanning electron microscopy, including energy dispersive X-ray spectroscopy as well as X-ray photoelectron spectroscopy. It was found that stoichiometric microcrystalline ZnWO4 thin films could be obtained, by operating the ZnO target during the sputtering procedure at a power of 55 W and by post-annealing the resulting thin films for at least 10 h at 600 °C. As FTO coated glass substrates were used, annealing led as well to the incorporation of Na, resulting in n+ doped ZnWO4 thin films.


2011 ◽  
Vol 44 (5) ◽  
pp. 983-990 ◽  
Author(s):  
Chris Elschner ◽  
Alexandr A. Levin ◽  
Lutz Wilde ◽  
Jörg Grenzer ◽  
Christian Schroer ◽  
...  

The electrical and optical properties of molecular thin films are widely used, for instance in organic electronics, and depend strongly on the molecular arrangement of the organic layers. It is shown here how atomic structural information can be obtained from molecular films without further knowledge of the single-crystal structure. C60 fullerene was chosen as a representative test material. A 250 nm C60 film was investigated by grazing-incidence X-ray diffraction and the data compared with a Bragg–Brentano X-ray diffraction measurement of the corresponding C60 powder. The diffraction patterns of both powder and film were used to calculate the pair distribution function (PDF), which allowed an investigation of the short-range order of the structures. With the help of the PDF, a structure model for the C60 molecular arrangement was determined for both C60 powder and thin film. The results agree very well with a classical whole-pattern fitting approach for the C60 diffraction patterns.


2010 ◽  
Vol 123-125 ◽  
pp. 375-378 ◽  
Author(s):  
Ram Prakash ◽  
Shalendra Kumar ◽  
Chan Gyu Lee ◽  
S.K. Sharma ◽  
Marcelo Knobel ◽  
...  

Ce1-xFexO2 (x=0, 0.01, 0.03 and 0.0 5) thin films were grown by pulsed laser deposition technique on Si and LaAlO3 (LAO) substrates. These films were deposited in vacuum and 200 mTorr oxygen partial pressure for both the substrates. These films were characterized by x-ray diffraction XRD and Raman spectroscopy measurements. XRD results reveal that these films are single phase. Raman results show F2g mode at ~466 cm-1 and defect peak at 489 cm-1 for film that deposited on LAO substrates, full width at half maximum (FWHM) is increasing with Fe doping for films deposited on both the substrates.


Sign in / Sign up

Export Citation Format

Share Document