Different routes to the formation of C54 TiSi2 in the presence of surface and interface molybdenum: A transmission electron microscopy study

2002 ◽  
Vol 17 (4) ◽  
pp. 784-789 ◽  
Author(s):  
Z-B. Zhang ◽  
S-L. Zhang ◽  
D-Z. Zhu ◽  
H-J. Xu ◽  
Y. Chen

Direct evidence revealing fundamental differences in sequence of phase formation during the growth of TiSi2 in the presence of an ultrathin surface or interface Mo layer is presented. Results of cross-sectional transmission electron microscopy showed that when the Mo layer was present at the interface between Ti films and Si substrates, C40 (Mo,Ti)Si2 formed at the interface, and Ti5Si3 grew on top after annealing at 550 °C. Additionally, both C54 and C40 TiSi2 were found in the close vicinity of the C40 (Mo,Ti)Si2 grains. No C49 grains were detected. Raising the annealing temperature to 600 °C led to the formation of C54 TiSi2 at the expense of Ti5Si3, and the interfacial C40 (Mo,Ti)Si2 also began to transform into C54 (Mo,Ti)Si2 at 600 °C. When the Mo was deposited on top of Ti, the silicide film was almost solely composed of C49 TiSi2 at 600 °C. However, a small amount of (Mo,Ti)5Si3 was still present in the vicinity of the sample surface. Upon annealing at 650 °C, only the C54 phase was found throughout the entire TiSi2 layer with a surface (Mo,Ti)Si2 on top of TiSi2. Hence, it was unambiguously shown that in the presence of surface versus interface Mo, different routes were taken to the formation of C54 TiSi2.

1992 ◽  
Vol 263 ◽  
Author(s):  
A.E.M. de Veirman ◽  
F. Hakkens ◽  
W. Coene ◽  
F.J.A. Den Broeder

ABSTRACTThe results of a transmission electron microscopy study of Co/Au and Co/Pd multilayers are reported. Special emphasis is put on the epitaxial growth and the relaxation of the misfit strain of these high misfit systems. In bright-field cross-sectional images, periodic contrast fringes are observed at the interfaces, which are the result of Moiré interference and which allow determination of the degree of misfit relaxation at the interface. It was established that 80-85% of the misfit is relaxed. From high resolution electron microscopy images the Burgers vector of the misfit dislocations was derived, being a/2<110> lying in the (111) interface plane. The results obtained for the Co/Au and Co/Pd multilayers will be discussed in comparison with those obtained for a bilayer of Co and Au.


2004 ◽  
Vol 19 (5) ◽  
pp. 1413-1416 ◽  
Author(s):  
G.H. Cao ◽  
P. Simon ◽  
W. Skrotzki

A YNi2B2C thin film deposited on MgO(001) substrate by pulsed laser deposition has been investigated by transmission electron microscopy (TEM). Cross-sectional TEM analyses show that the YNi2B2C film grows in the [001] direction. Y2O3 exists not only as an interlayer at the interface of the YNi2B2C thin film and the MgO substrate but occasionally also in the YNi2B2C thin film near the substrate. The orientation relationships between the YNi2B2C thin film, Y2O3 interlayer, and MgO substrate are determined from electron-diffraction patterns to be MgO(001)[100] ‖ Y2O3(001)[100], YNi2B2C(001)[110] ‖ Y2O3(001)[100] ‖ Y2O3(001)[100, and YNi2B2C(001)[100] ‖ Y2O3(001)[100 1.5‖ Y2O3(001)[100] ‖ Y2O3(001)[100 (the numeral above the “parallel” symbol represents the misorientation (in degrees) between the [100] ‖ Y2O3(001)[100 directions).


Sign in / Sign up

Export Citation Format

Share Document