Analysis of sharp-tip-indentation load–depth curve for contact area determination taking into account pile-up and sink-in effects

2004 ◽  
Vol 19 (11) ◽  
pp. 3307-3315 ◽  
Author(s):  
Yeol Choi ◽  
Ho-Seung Lee ◽  
Dongil Kwon

Hardness and elastic modulus of micromaterials can be evaluated by analyzing instrumented sharp-tip-indentation load–depth curves. The present study quantified the effects of tip-blunting and pile-up or sink-in on the contact area by analyzing indentation curves. Finite-element simulation and theoretical modeling were used to describe the detailed contact morphologies. The ratio f of contact depth, i.e., the depth including elastic deflection and pile-up and sink-in, to maximum indentation depth, i.e., the depth measured only by depth sensing, ignoring elastic deflection and pile-up and sink-in, was proposed as a key indentation parameter in evaluating real contact depth during indentation. This ratio can be determined strictly in terms of indentation-curve parameters, such as loading and unloading slopes at maximum depth and the ratio of elastic indentation energy to total indentation energy. In addition, the value of f was found to be independent of indentation depth, and furthermore the real contact area can be determined and hardness and elastic modulus can be evaluated from f. This curve-analysis method was verified in finite-element simulations and nanoindentation experiments.

Exacta ◽  
2009 ◽  
Vol 6 (2) ◽  
pp. 197-208
Author(s):  
Alex Alves Bandeira ◽  
Rita Moura Fortes ◽  
João Virgílio Merighi

The basic aim in this work is to present a new technique to analyze the contact surfaces developed by the contact between the tires and the structural pavements by numerical simulations, using 3D finite element formulations with contact mechanics. For this purpose, the Augmented Lagrangian method is used. This study is performed just putting the tires on the structural pavement. These tires and the structural pavement are discretized by finite elements under large 3D elastoplastic deformation. The real loads (of aircrafts, trucks or cars) are applied directly on each tire and by contact mechanics procedures, the real contact area between the tires and the pavement surface is computed. The penetration conditions and the contact interfaces are investigated in details. Furthermore, the pressure developed at the contact surfaces is automatically calculated and transferred to the structural pavement by contact mechanics techniques. The purpose of this work research is to show that the contact area is not circular and the finite element techniques can calculate automatically the real contact area, the real geometry and its stresses and strains. In the end of this work, numerical results in terms of geometry, stress and strain are presented and compared to show the ability of the algorithm. These numerical results are also compared with the numerical results obtained by the commercial program ANSYS.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
S. Shankar ◽  
M. M. Mayuram

An axisymmetrical hemispherical asperity in contact with a rigid flat is modeled for an elastic perfectly plastic material. The present analysis extends the work (sphere in contact with a flat plate) of Kogut–Etsion Model and Jackson–Green Model and addresses some aspects uncovered in the above models. This paper shows the critical values in the dimensionless interference ratios (ω∕ωc) for the evolution of the elastic core and the plastic region within the asperity for different Y∕E ratios. The present analysis also covers higher interference ratios, and the results are applied to show the difference in the calculation of real contact area for the entire surface with other existing models. The statistical model developed to calculate the real contact area and the contact load for the entire surfaces based on the finite element method (FEM) single asperity model with the elastic perfectly plastic assumption depends on the Y∕E ratio of the material.


Author(s):  
H. R. Pasaribu ◽  
D. J. Schipper

The effective mechanical properties of a layered surface vary as a function of indentation depth and the values of these properties range between the value of the layer itself and of the substrate. In this paper, a layered surface is modelled like a solid that has effective mechanical properties as a function of indentation depth by assuming that the layer is perfectly bounded to the substrate. The normal load as a function of indentation depth of sphere pressed against a flat layered surface is calculated using this model and is in agreement with the experimental results published by El-Sherbiney (1975), El-Shafei et al. (1983), Tang & Arnell (1999) and Michler & Blank (2001). A deterministic contact model of a rough surface against a flat layered surface is developed by representing a rough surface as an array of spherically shaped asperities with different radii and heights (not necessarily Gaussian distributed). Once the data of radius and height of every single asperity is obtained, one can calculate the number of asperities in contact, the real contact area and the load carried by the asperities as a function of the separation.


2013 ◽  
Vol 579-580 ◽  
pp. 517-522 ◽  
Author(s):  
Jia Chun Wang ◽  
Bo Qiang Xing ◽  
Teng Zhao

No surface in engineering is absolutely smooth. It is important to analyze and calculate the real contact area for a better understanding of friction, wear, lubrication and thermal conductance. To obtain the accurate real contact area between rough surface and smooth surface, a rough-non-rigid-smooth surface contact finite element model is proposed in which the rough surface is characterized by fracture theory. In finite element modeling and analyzing process, MATLABEXCEL and AutoCAD are used to process data, and the smooth surface is considered to be non-rigid body. Compared with the traditional modeling, this method can obtain data quickly and is closer to the actual situation.


Exacta ◽  
2009 ◽  
Vol 6 (2) ◽  
pp. 197-208
Author(s):  
Alex Alves Bandeira ◽  
Rita Moura Fortes ◽  
João Virgílio Merighi

The basic aim in this work is to present a new technique to analyze the contact surfaces developed by the contact between the tires and the structural pavements by numerical simulations, using 3D finite element formulations with contact mechanics. For this purpose, the Augmented Lagrangian method is used. This study is performed just putting the tires on the structural pavement. These tires and the structural pavement are discretized by finite elements under large 3D elastoplastic deformation. The real loads (of aircrafts, trucks or cars) are applied directly on each tire and by contact mechanics procedures, the real contact area between the tires and the pavement surface is computed. The penetration conditions and the contact interfaces are investigated in details. Furthermore, the pressure developed at the contact surfaces is automatically calculated and transferred to the structural pavement by contact mechanics techniques. The purpose of this work research is to show that the contact area is not circular and the finite element techniques can calculate automatically the real contact area, the real geometry and its stresses and strains. In the end of this work, numerical results in terms of geometry, stress and strain are presented and compared to show the ability of the algorithm. These numerical results are also compared with the numerical results obtained by the commercial program ANSYS.


1996 ◽  
Vol 11 (3) ◽  
pp. 760-768 ◽  
Author(s):  
A. Bolshakov ◽  
W. C. Oliver ◽  
G. M. Pharr

The finite element method has been used to study the behavior of aluminum alloy 8009 during elastic-plastic indentation to establish how the indentation process is influenced by applied or residual stress. The study was motivated by the experiments of the preceding paper which show that nanoindentation data analysis procedures underestimate indentation contact areas and therefore overestimate hardness and elastic modulus in stressed specimens. The NIKE2D finite element code was used to simulate indentation contact by a rigid, conical indenter in a cylindrical specimen to which biaxial stresses were applied as boundary conditions. Indentation load-displacement curves were generated and analyzed according to standard methods for determining hardness and elastic modulus. The simulations show that the properties measured in this way are inaccurate because pileup is not accounted for in the contact area determination. When the proper contact area is used, the hardness and elastic modulus are not significantly affected by the applied stress.


Author(s):  
A. Sepehri ◽  
K. Farhang

Three dimensional elastic-plastic contact of a nominally flat rough surface and a flat is considered. The asperity level Finite Element based constitutive equations relating contact force and real contact area to the interference is used. The statistical summation of asperity interaction during unloading phase is derived in integral form. Approximate equations are found that describe in closed form contact load as a function of mean plane separation during unloading. The approximate equations provide accuracy to within 6 percent for the unload phase of the contact force.


2005 ◽  
Vol 127 (2) ◽  
pp. 325-330 ◽  
Author(s):  
J. Yang ◽  
K. Komvopoulos

The impact of a rigid sphere moving at constant velocity on elastic homogeneous half-space was analyzed by the finite element method. Frictionless dynamic contact was modeled with special contact elements at the half-space surface. A dimensionless parameter, β, was introduced to study the effect of wave propagation on the deformation behavior. For small surface interference (β⩽1), the front of the faster propagating dilatational waves extends up to the contact edge, the real contact area is equal to the truncated area, and the contact pressure distribution is uniform. However, for large surface interference (β>1), the dilatation wave front extends beyond the contact edge, the real contact area is less than the truncated area, and the contact pressure exhibits a Hertzian-like distribution. The mean contact pressure increases abruptly at the instant of initial contact, remains constant for β⩽1, and increases gradually for β>1. Based on finite element results for the subsurface stress, strain, and velocity fields, a simple theoretical model that yields approximate closed-form relationships for the mean contact pressure and kinetic and strain energies of the half-space was derived for small surface interference (β⩽1), and its validity was confirmed by favorable comparisons with finite element results.


2007 ◽  
Vol 991 ◽  
Author(s):  
Bo Jiang ◽  
Gregory P. Muldowney

ABSTRACTAsperity-scale pad deformation and dynamic pad-wafer contact area are crucial to the fundamental understanding of material removal and defect formation mechanisms in CMP. Pad asperity stress and strain are also central to characterizing pad wear rate during polishing and cut rate during conditioning. While it is very difficult to isolate and measure stress and strain in individual asperities, finite element modeling may be used in conjunction with experimental surface characterization to predict asperity-scale deformation and pad-wafer contact. Asperity sub-domains up to 1270 microns across are reproduced from three-dimensional point cloud data on porous polyurethane CMP pads obtained by confocal microscopy, meshed to high resolution, and analyzed using ABAQUS finite element software. Physical properties are derived from dynamic mechanical experiments. Pad stacks are simulated both with and without sub-pads. Results show that while a sub-pad increases pad-wafer contact area overall, it limits the local spreading of individual contact regions as polishing load increases. This finding identifies a direct mechanical origin of the trade-off in pad design between wafer-scale and die-scale planarity. As expected, the real contact area between a pad and wafer is much smaller than the cross-sectional or “bearing” area, but the difference is notably greater when a sub-pad is present. Values of asperity stress and strain under typical CMP polishing pressures reveal that plastic deformation takes place both on and beneath the contacting surface. Hence upon release of the polishing load the asperities do not fully rebound to their pre-compressed shapes. Each pass under the wafer thus reshapes the pad asperities such that a slightly different texture is presented upon the next pass. These deformation mechanics clarify the impact of top pad and sub-pad properties on real contact area, allowing better optimization of CMP pad performance.


Sign in / Sign up

Export Citation Format

Share Document