Fluorescence property and dissolution site of Er3+ in Ta2O5 film prepared by sol-gel method and dip-coating technique

2004 ◽  
Vol 19 (2) ◽  
pp. 667-675 ◽  
Author(s):  
Noriyuki Wada ◽  
Michiyo Kubo ◽  
Nobuko Maeda ◽  
Maegawa Akira ◽  
Kazuo Kojima

Ta2O5–xEr2O3 (TE) films were produced by a sol-gel method and a dip-coating technique with heat treatment at 600–1000 °C. Their powders were also prepared from the same sol. The Er3+ fluorescence property of the TE films containing various contents of Er3+ was measured as a function of the heat-treatment temperature. In crystallized films, the Er3+ fluorescence was observed because water-related residues (Ta–OH and H2O) and carbon-related residues (–CH3, –CH2–, –(C ⁼ O)–, and C≡C–H) were removed from the films. It is shown from infrared absorption spectroscopy that Ta–O− and Ta ⁼ O structures dissolve the Er3+ ions selectively and play a role in dispersing the Er3+. The strongest Er3+ fluorescence is observed in the TE film with 2 mol% of Er2O3 because of its highest ability to disperse the Er3+ ions.

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7125
Author(s):  
Magdalena Zięba ◽  
Katarzyna Wojtasik ◽  
Cuma Tyszkiewicz ◽  
Ewa Gondek ◽  
Jacek Nizioł ◽  
...  

Crack-free binary SiOx:TiOy composite films with the refractive index of ~1.94 at wavelength 632.8 nm were fabricated on soda-lime glass substrates, using the sol–gel method and dip-coating technique. With the use of transmission spectrophotometry and Tauc method, the energy of the optical band gap of 3.6 eV and 4.0 eV were determined for indirect and direct optical allowed transitions, respectively. Using the reflectance spectrophotometry method, optical homogeneity of SiOx:TiOy composite films was confirmed. The complex refractive index determined by spectroscopic ellipsometry confirmed good transmission properties of the developed SiOx:TiOy films in the Vis-NIR spectral range. The surface morphology of the SiOx:TiOy films by atomic force microscopy (AFM) and scanning electron microscopy (SEM) methods demonstrated their high smoothness, with the root mean square roughness at the level of ~0.15 nm. Fourier-transform infrared (FTIR) spectroscopy and Raman spectroscopy were used to investigate the chemical properties of the SiOx:TiOy material. The developed binary composite films SiOx:TiOy demonstrate good waveguide properties, for which optical losses of 1.1 dB/cm and 2.7 dB/cm were determined, for fundamental TM0 and TE0 modes, respectively.


2013 ◽  
Vol 712-715 ◽  
pp. 257-261
Author(s):  
Yin Lin Wu ◽  
Qing Hui Wang ◽  
Ling Wang ◽  
Hai Yan Zhao

The La0.75Sr0.25Cr0.5Mn0.5O3-δnanometer powders were prepared by citric acid sol-gel method.The samples were characterized by DTA, FT-IR, XRD, TEM techniques. The preparation process, morphology of synthesized powders, the best heat-treatment temperature and the electrochemical performance had been studied. The results show that the spherical nanometer powders can be obtained and the best heat-treatment temperature is 800°C. The particle size is about 30nm and Ea is 0.071 eV.


2015 ◽  
Vol 33 (4) ◽  
pp. 732-741 ◽  
Author(s):  
Anna Adamczyk

AbstractAluminosilicate materials were obtained by sol-gel method, using different Al2O3 and SiO2 precursors in order to prepare sols based on water and organic solvents. As SiO2 precursors, Aerosil 200TM and tetraethoxysilane TEOS: Si(OC2H5)4 were applied, while DisperalTM and aluminium secondary butoxide ATSB: Al(OC4H9)3 were used for Al2O3 ones. Bulk samples were obtained by heating gels at 500 °C, 850 °C and at 1150 °C in air, while thin films were synthesized on carbon, steel and alundum (representing porous ceramics) substrates by the dip coating method. Thin films were annealed in air (steel and alundum) and in argon (carbon) at different temperatures, depending on the substrate type. The samples were synthesized as gels and coatings of the composition corresponding the that of 3Al2O3·2SiO2 mullite because of the specific valuable properties of this material. The structure of the annealed bulk samples and coatings was studied by FT-IR spectroscopy and XRD method (in standard and GID configurations). Additionally, the electron microscopy (SEM) together with EDS microanalysis were applied to describe the morphology and the chemical composition of thin films. The analysis of FT-IR spectra and X-ray diffraction patterns of bulk samples revealed the presence of γ-Al2O3 and δ-Al2O3 phases, together with the small amount of SiO2 in the particulate samples. This observation was confirmed by the bands due to vibrations of Al–O bonds occurring in γ-Al2O3 and δ-Al2O3 structures, in the range of 400 to 900 cm−1. The same phases (γ-Al2O3 and δ-Al2O) were observed in the deposited coatings, but the presence of particulate ones strongly depended on the type of Al2O3 and SiO2 precursor and on the heat treatment temperature. All thin films contained considerable amounts of amorphous phase.


2012 ◽  
Vol 591-593 ◽  
pp. 1012-1016 ◽  
Author(s):  
Jing Ying Lu ◽  
Qing Nan Zhao ◽  
Shao Hong Hou ◽  
Yu Hong Dong

TiO2-SiO2 double-layer films are prepared on glass substrates by sol-gel method and dip dipping method. The effect of aging time, heat treatment temperature and molar content of TiO2 for the optical properties of the films have been studied on this paper. And on this basis TiO2-SiO2/SiO2 double-layer films have been prepared as well as the transmittances in the visible range of it have been studied. The results of this paper show that the transmittances of TiO2-SiO2 films in the visible range are reduced with the increasing of sol aging time, molar content of TiO2 and heat treatment temperature; The TiO2-SiO2/SiO2 double-layer films prepared on this basis have antireflective effect, and the average transmittances in the visible range of it are increased nearly 4%-5% more than glass substrate and the transmittance peak reached 100%; the surfaces of the films are smooth; in addition, the cut sides of UV of TiO2-SiO2/SiO2 double-layer films are moved to infrared with the increase of TiO2 content.


2009 ◽  
Vol 60-61 ◽  
pp. 283-287
Author(s):  
Jia Qin Liu ◽  
Yu Cheng Wu ◽  
Guang Hai Li ◽  
Li De Zhan

CuO/SiO2 nanocomposite films were prepared by sol-gel process combined with the dip-coating technique. The mean diameter of CuO nanoparticles formed during the heat treatment process and mainly lay in the pores of mesoporous SiO2 matrix increased by increasing the heat treatment temperature. Consequently, compared with mesoporous SiO2 matrix, the pore volume and specific surface area of prepared samples descend. The diffraction peaks of Cu and CuO and the crystalline diffraction ring of CuO with body centered cubic structure can be clearly observed after heat-treated in air and H2 at 800 oC for 1h. By increasing the heat treatment temperature and concentration of CuO, a slightly red-shift could be observed.


2018 ◽  
Vol 15 (2) ◽  
pp. 234-237
Author(s):  
Baghdad Science Journal

SiO2 nanostructure is synthesized by the Sol-Gel method and thin films are prepared using dip coating technique. The effect of laser densification is studied. X-ray Diffraction (XRD), Fourier Transformation Infrared Spectrometer (FTIR), and Field Emission Scanning Electron Microscopy (FESEM) are used to analyze the samples. The results show that the silica nanoparticles are successfully synthesized by the sol-gel method after laser densification. XRD patterns show that cristobalite structure is observed from diode laser (410 nm) rather than diode laser (532 nm). FESEM images showed that the shape of nano silica is spherical and the particles size is in nano range (? 100 nm). It is concluded that the spherical nanocrystal structure of silica thin films is successfully densified by Doide laser (410 nm).


Sign in / Sign up

Export Citation Format

Share Document