Electrical characterization of defect states in local conductivity domains in ZnO:N,As layers

2007 ◽  
Vol 22 (7) ◽  
pp. 1775-1778 ◽  
Author(s):  
Andre Krtschil ◽  
Armin Dadgar ◽  
Annette Diez ◽  
Alois Krost

P- and n-type conductivity domains in dual-doped ZnO:As+N layers grown by metal organic vapor phase epitaxy on GaN–sapphire templates were electrically microcharacterized by scanning capacitance microscopy (SCM) and scanning surface potential microscopy (SSPM) techniques with respect to their defect states. The p-type domains were found to be dominated by two acceptors with thermal activation energies of about 80 and 270 meV, as observed by transient SCM scans at different temperatures. Optically excited SSPM scans revealed defect-to-band transitions at 400, 459, and 505 nm omnipresent in both domain types as well as a shallower transition at 377 nm exclusively in the p-type regions. According to the similar energy levels, the optical transitions at 377 and 400 nm are assigned to acceptor states, whereby the 80-meV acceptor is probably responsible for the conversion from n- to p-type regions in the domains.

2006 ◽  
Vol 957 ◽  
Author(s):  
Andre Krtschil ◽  
Armin Dadgar ◽  
Annette Diez ◽  
Alois Krost

ABSTRACTP- and n-type conductivity domains in dual-doped ZnO:As+N layers grown by metal organic vapor phase epitaxy on GaN/sapphire templates were electrically microcharacterized by scanning capacitance (SCM) and scanning surface potential microscopy (SSPM) techniques with respect to their defect states. The p-type domains were found to be dominated by two acceptors with thermal activation energies of about 80 and 270 meV as observed by transient SCM scans at different temperatures. Optically excited SSPM scans revealed defect-to-band-transitions at 400, 459, and 505 nm omnipresent in both domain types as well as a shallower transition at 377 nm exclusively in the p-type regions. According to the similar energy levels the optical transitions at 377 and 400 nm are assigned to acceptor states, whereby the 80meV-acceptor is probably responsible for the conversion from n- to p-type in the domains.


1988 ◽  
Vol 144 ◽  
Author(s):  
M. A. Tischler ◽  
T. F. Kuech

ABSTRACTThe control of p-type dopants is very important in producing high performance minority carrier devices such as heterojunction bipolar transistors (HBT) and lasers. In this study, an electrical characterization technique is described which is very sensitive to the p-type dopant profile in a heterojunction. Both the placement of the dopant, i.e. the as-grown profile, and thermal diffusion effects have been investigated. The factors which control the initial placement and subsequent diffusion of the dopant species have been determined and used to produce device-quality GaAs/Al0.30Ga0.70As p+/n heterojunctions.


2011 ◽  
Vol 679-680 ◽  
pp. 804-807 ◽  
Author(s):  
F. Danie Auret ◽  
Walter E. Meyer ◽  
M. Diale ◽  
P.J. Janse Van Rensburg ◽  
S.F. Song ◽  
...  

Gallium nitride (GaN), grown by HVPE, was implanted with 300 keV Eu ions and then annealed at 1000 oC . Deep level transient spectroscopy (DLTS) and Laplace DLTS (L-DLTS) were used to characterise the ion implantation induced defects in GaN. Two of the implantation induced defects, E1 and E2, with DLTS peaks in the 100 – 200 K temperature range, had DLTS signals that could be studied with L-DLTS. We show that these two defects, with energy levels of 0.18 eV and 0.27 eV below the conduction band, respectively, are two configurations of a metastable defect. These two defect states can be reproducibly removed and re-introduced by changing the pulse, bias and temperature conditions, and the transformation processes follow first order kinetics.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1966
Author(s):  
Domenico Pellegrino ◽  
Lucia Calcagno ◽  
Massimo Zimbone ◽  
Salvatore Di Franco ◽  
Antonella Sciuto

In this study, 4H-SiC p–n junctions were irradiated with 700 keV He+ ions in the fluence range 1.0 × 1012 to 1.0 × 1015 ions/cm2. The effects of irradiation were investigated by current–voltage (I–V) and capacitance–voltage (C–V) measurements, while deep-level transient spectroscopy (DLTS) was used to study the traps introduced by irradiation defects. Modifications of the device’s electrical performances were observed after irradiation, and two fluence regimes were identified. In the low fluence range (≤1013 ions/cm2), I–V characteristics evidenced an increase in series resistance, which can be associated with the decrease in the dopant concentration, as also denoted by C–V measurements. In addition, the pre-exponential parameter of junction generation current increased with fluence due to the increase in point defect concentration. The main produced defect states were the Z1/2, RD1/2, and EH6/7 centers, whose concentrations increased with fluence. At high fluence (>1013 ions/cm2), I–V curves showed a strong decrease in the generation current, while DLTS evidenced a rearrangement of defects. The detailed electrical characterization of the p–n junction performed at different temperatures highlights the existence of conduction paths with peculiar electrical properties introduced by high fluence irradiation. The results suggest the formation of localized highly resistive regions (realized by agglomeration of point defects) in parallel with the main junction.


2003 ◽  
Vol 18 (6) ◽  
pp. 554-559 ◽  
Author(s):  
F Moscatelli ◽  
A Scorzoni ◽  
A Poggi ◽  
G C Cardinali ◽  
R Nipoti

2002 ◽  
Vol 93 (1-3) ◽  
pp. 85-89 ◽  
Author(s):  
A Krtschil ◽  
A Kielburg ◽  
H Witte ◽  
A Krost ◽  
J Christen ◽  
...  

Author(s):  
D. Berman-Mendoza ◽  
O. I. Diaz-Grijalva ◽  
R. López-Delgado ◽  
A. Ramos-Carrazco ◽  
M. E. Alvarez-Ramos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document