Indentation fracture of low-dielectric constant films: Part II. Indentation fracture mechanics model

2008 ◽  
Vol 23 (9) ◽  
pp. 2443-2457 ◽  
Author(s):  
Dylan J. Morris ◽  
Robert F. Cook

Part I [D.J. Morris and R.F. Cook,J. Mater. Res.23,2429 (2008)] of this two-part work explored the instrumented indentation and fracture phenomena of compliant, low-dielectric constant (low-κ) films on silicon substrates. The effect of film thickness and probe acuity on the fracture response, as well as the apparent connection of this response to the perceived elastic modulus, were demonstrated. These results motivate the creation of a fracture model that incorporates all of these variables here in Part II. Indentation wedging is identified as the mechanism that drives radial fracture, and a correction is introduced that adjusts the wedging strength of the probe for the attenuating influence of the relatively stiff substrate. An estimate of the film fracture toughness can be made if there is an independent measurement of the film stress; if not, a critical film thickness for channel-cracking under the influence of film stress may be estimated.

2008 ◽  
Vol 23 (9) ◽  
pp. 2429-2442 ◽  
Author(s):  
Dylan J. Morris ◽  
Robert F. Cook

Advanced microelectronic interconnection structures will need dielectrics of low permittivity to reduce capacitive delays and crosstalk, but this reduction in permittivity typically necessitates an increase in the porosity of the material, which is frequently accompanied by reduced mechanical reliability. Failure by brittle fracture remains a typical manufacturing and reliability hurdle for this class of materials. Part I of this two-part work explores the instrumented indentation and indentation fracture responses of a variety of organosilicate low-dielectric constant (low-κ) films. Three different chemical varieties of low-κ material were tested. The influence of film thickness on the fracture response is also explored systematically. Correlations are made between instrumented indentation responses and differing modes of fracture. It is demonstrated that the elastic response of the composite film + substrate systems can be simply tied to the fraction of the total indentation strain energy in the film. These results are then used in the companion paper, Part II [D.J. Morris and R.F. Cook, J. Mater. Res.23, 2443 (2008)], to derive and use a fracture mechanics model to measure fracture properties of low-κ films.


2005 ◽  
Vol 863 ◽  
Author(s):  
Eva E. Simonyi ◽  
E. Liniger ◽  
M. Lane ◽  
Q. Lin ◽  
C. D. Dimitrakopoulos ◽  
...  

AbstractIt is of importance to understand cracking behavior in low dielectric constant, low modulus materials. Nanoindentation method is presented as a tool to estimate the critical film thickness, thickness above which spontaneous cracking could occur, for ILD films used in the BEOL. The critical film thickness was then used to calculate cohesive energies and fracture toughness of the films. Materials were investigated using nanoindentation combined with AFM imaging. The results were compared to data acquired by four point bend methods.


1999 ◽  
Vol 565 ◽  
Author(s):  
Y. Shimogaki ◽  
S. W. Lim ◽  
E. G. Loh ◽  
Y. Nakano ◽  
K. Tada ◽  
...  

AbstractLow dielectric constant F-doped silicon oxide films (SiO:F) can be prepared by adding fluorine source, like as CF4 to the conventional PECVD processes. We could obtain SiO:F films with dielectric constant as low as 2.6 from the reaction mixture of SiH4/N2 O/CF4. The structural changes of the oxides were sensitively detected by Raman spectroscopy. The three-fold ring and network structure of the silicon oxides were selectively decreased by adding fluorine into the film. These structural changes contribute to the decrease ionic polarization of the film, but it was not the major factor for the low dielectric constant. The addition of fluorine was very effective to eliminate the Si-OH in the film and the disappearance of the Si-OH was the key factor to obtain low dielectric constant. A kinetic analysis of the process was also performed to investigate the reaction mechanism. We focused on the effect of gas flow rate, i.e. the residence time of the precursors in the reactor, on growth rate and step coverage of SiO:F films. It revealed that there exists two species to form SiO:F films. One is the reactive species which contributes to increase the growth rate and the other one is the less reactive species which contributes to have uniform step coverage. The same approach was made on the PECVD process to produce low-k C:F films from C2F4, and we found ionic species is the main precursor to form C:F films.


2020 ◽  
Author(s):  
Vedanki ◽  
Chandrabhan Dohare ◽  
Pawan KumarSrivastava ◽  
Premlata Yadav ◽  
Subhasis Ghosh

Sign in / Sign up

Export Citation Format

Share Document