Role of free volume in strain softening of as-cast and annealed bulk metallic glass

2009 ◽  
Vol 24 (4) ◽  
pp. 1405-1416 ◽  
Author(s):  
Byung-Gil Yoo ◽  
Kyoung-Won Park ◽  
Jae-Chul Lee ◽  
U. Ramamurty ◽  
Jae-il Jang

Plasticity in amorphous alloys is associated with strain softening, induced by the creation of additional free volume during deformation. In this paper, the role of free volume, which was a priori in the material, on work softening was investigated. For this, an as-cast Zr-based bulk metallic glass (BMG) was systematically annealed below its glass transition temperature, so as to reduce the free volume content. The bonded-interface indentation technique is used to generate extensively deformed and well defined plastic zones. Nanoindentation was utilized to estimate the hardness of the deformed as well as undeformed regions. The results show that the structural relaxation annealing enhances the hardness and that both the subsurface shear band number density and the plastic zone size decrease with annealing time. The serrations in the nanoindentation load-displacement curves become smoother with structural relaxation. Regardless of the annealing condition, the nanohardness of the deformed regions is ∼12–15% lower, implying that the prior free volume only changes the yield stress (or hardness) but not the relative flow stress (or the extent of strain softening). Statistical distributions of the nanohardness obtained from deformed and undeformed regions have no overlap, suggesting that shear band number density has no influence on the plastic characteristics of the deformed region.

2009 ◽  
Vol 618-619 ◽  
pp. 437-441
Author(s):  
Hao Wen Xie ◽  
Peter D. Hodgson ◽  
Cui E Wen

Vickers and nano indentations were performed on a structurally relaxed Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass (BMG), and the evolution of the shear bands in the relaxed BMG was investigated and compared to that in the as-cast alloy. Results indicate that the plastic deformation in the BMG with structure relaxation is accommodated by the semicircular (primary) and radial (secondary) as well as tertiary shear bands. Quantitatively, the shear band density in the relaxed alloy was much lower than that in the as-cast alloy. The annihilation of free volume caused by the annealing was responsible for the embrittlement of the sample with structure relaxation.


2010 ◽  
Vol 25 (12) ◽  
pp. 2271-2277 ◽  
Author(s):  
N. Zheng ◽  
G. Wang ◽  
L.C. Zhang ◽  
M. Calin ◽  
M. Stoica ◽  
...  

The structural evolution of the Ti40Zr10Cu34Pd14Sn2 bulk metallic glass (BMG) upon was investigated by means of in situ high-energy x-ray diffraction. The position, width, and intensity of the first peak in diffraction patterns are fitted through Voigt function below 800 K. All the peak position, width, and intensity values show a nearly linear increase with the increasing temperature to the onset temperature of structural relaxation, Tr = 510 K. However, these values start to deviate from the linear behavior between Tr and Tg (the glass transition temperature). The changes in free volume and the coefficient of volume thermal expansion prove that the aforementioned phenomenon is closely related to the structural relaxation releasing excess free volume arrested during rapid quenching of the BMG. Above 800 K, three crystallization events are detected and the first exothermic event is due to the formation of metastable nanocrystals.


2007 ◽  
Vol 1048 ◽  
Author(s):  
Akito Ishii ◽  
Fuminobu Hori ◽  
Akihiro Iwase ◽  
Yoshihiko Yokoyama ◽  
Toyohiko J Konno

AbstractStructural relaxation around free volume in Zr50Cu40Al10 bulk metallic glass (BMG) during isothermal annealing at 473, 573 and 673 K which are below glass transition temperature Tg =675 K have been investigated by positron annihilation lifetime (PAL) and coincidence Doppler broadening (CDB) measurements. The trends of change in positron lifetime, which correspond to the size of free volume at each annealing temperature, have a good correlation with their density change. These annealing processes obey a stretched exponential relaxation function (KWW: Kohlrausch-Williams-Watts law). Fitting parameters of KWW function, with relaxation time t0 and β, in each temperature were determined. These relaxation parameters depend on the annealing temperature, suggesting the distribution of activation energy for structural relaxation. Moreover, the profile of electron momentum distribution around free volume derived by CDB spectrum during annealing showed no appreciable change at each temperature. These facts suggest that long range chemical ordering, particularly around the free volume, dose not take place essentially.


2014 ◽  
Vol 910 ◽  
pp. 48-52 ◽  
Author(s):  
Jian Sheng Gu ◽  
Hui Feng Bo

Structural relaxation through isothermal annealing below the glass transition temperature was conducted on a Zr64.13Cu15.75Ni10.12Al10bulk metallic glass. Differential scanning calorimetry was used to quantify enthalpy differences between the as-cast and relaxed samples, which were then related to average free volume differences. The influence of structural relaxation on plasticity was examined. While the free volume decreasement can be clearly observed between the as-cast and relaxed samples, structural relaxation is not accompanied by severe embrittlement.


2003 ◽  
Vol 806 ◽  
Author(s):  
Biraja P. Kanungo ◽  
Matthew J. Lambert ◽  
Katharine M. Flores

ABSTRACTThe free volume changes associated with deformation of metallic glasses play an important role in strain localization in shear bands. However the details of these structural changes during inhomogeneous deformation are unclear. In this study, the free volume changes in Cu60Zr30Ti10 and Zr58.5Cu15.6Ni12.8Al10.3Nb2.8 bulk metallic glasses were examined and quantified using differential scanning calorimetry following rolling and low temperature annealing. It was found that the height of the endothermic peak associated with the glass transition decreased following deformation whereas annealing resulted in an increase in the peak height. Additionally, the exothermic event associated with structural relaxation prior to the glass transition occurred at a lower temperature after rolling in the Zr-based system. Surprisingly, a similar shift in the onset temperature was not observed in the Cu-based system, suggesting a different structural relaxation mechanism. The Zr-based system was successfully modeled and the results indicated that the free volume increased ∼4% with inhomogeneous deformation and decreased ∼14% with annealing, consistent with expectations. In an effort to further characterize strain localization in shear bands, the development of a crack tip damage zone in a Zr-based bulk metallic glass composite was studied using scanning electron and atomic force microscopy. The first shear band developed at an angle of ∼60° from the crack propagation direction. This is discussed in light of the Mohr-Coulomb yield criterion for metallic glasses. The reinforcement phase arrested the growth of individual shear bands, while accumulated damage resulted in the shear bands cutting through the crystalline phase, ultimately resulting in crack branching and failure.


Sign in / Sign up

Export Citation Format

Share Document