Mechanochemical synthesis of a Mg-Li-Al-H complex hydride

2009 ◽  
Vol 24 (9) ◽  
pp. 2880-2885 ◽  
Author(s):  
Jing Zhang ◽  
Wei Yan ◽  
Chenguang Bai ◽  
Fusheng Pan

Mg-Li-Al alloy was prepared by ingot casting and then underwent subsequent reactive ball milling. A Mg-Li-Al-H complex hydride was obtained under a 0.4 MPa hydrogen atmosphere at room temperature, and as high as 10.7 wt% hydrogen storage capacity was achieved, with the peak desorption temperature of the initial step at approximately 65 °C. The evolution of the reaction during milling, as well as the effect of Li/Al ratio in the raw materials on the desorption properties of the hydrides formed, were studied by x-ray diffraction and simultaneous thermogravimetry and differential scanning calorimetry techniques. The results showed that mechanical milling increases the solubility of Li in Mg, leading to the transformation of bcc β(Li) solid solution to hcp α(Mg) solid solution, the latter continues to incorporate Li and Al, which stimulates the formation of Mg-Li-Al-H hydride. A lower Li/Al ratio resulted in faster hydrogen desorption rate and a greater amount of hydrogen released at a low temperature range, but sacrificing total hydrogen storage capacity.

2021 ◽  
Vol 59 (10) ◽  
pp. 721-729
Author(s):  
Myoung Youp Song ◽  
Seong Ho Lee ◽  
Young Jun Kwak

VCl3 (vanadium (III) chloride) was selected as an additive to Mg to increase the hydrogenation and dehydrogenation rates and the hydrogen storage capacity of Mg. Instead of MgH2, Mg was used as a starting material since Mg is cheaper than MgH2. Samples with a composition of 95 wt% Mg + 5 wt% VCl3 (named Mg-5VCl3) were prepared by milling in hydrogen atmosphere (reactive milling). In the first cycle (n=1), Mg-5VCl3 absorbed 5.38 wt% H for 5 min and 5.95 wt% H for 60 min at 573 K in 12 bar hydrogen. The activation of Mg-5VCl3 was completed after three hydrogenation-dehydrogenation cycles. During milling in hydrogen, β-MgH2 and γ-MgH2 were produced. The formed β-MgH2 and γ-MgH2 are considered to have made the effects of reactive milling stronger as β-MgH2 and γ-MgH2 themselves were being pulverized. The introduced defects and the interfaces between the Mg and the phases formed during the reactive milling and during hydrogenation-dehydrogenation cycling are believed to serve as heterogeneous active nucleation sites for MgH2 and Mg-H solid solution. The phases generated during hydrogenation-dehydrognation cycling are also believed to prevent the particles from coalescing during hydrogenation-dehydrognation cycling.


2021 ◽  
Vol 59 (10) ◽  
pp. 709-717
Author(s):  
Myoung Youp Song ◽  
Seong Ho Lee ◽  
Young Jun Kwak

VCl3 (vanadium (III) chloride) was selected as an additive to Mg to increase the hydrogenation and dehydrogenation rates and the hydrogen storage capacity of Mg. Instead of MgH2, Mg was used as a starting material since Mg is cheaper than MgH2. Samples with a composition of 95 wt% Mg + 5 wt% VCl3 (named Mg-5VCl3) were prepared by milling in hydrogen atmosphere (reactive milling). In the first cycle (n=1), Mg-5VCl3 absorbed 5.38 wt% H for 5 min and 5.95 wt% H for 60 min at 573 K in 12 bar hydrogen. The activation of Mg-5VCl3 was completed after three hydrogenation-dehydrogenation cycles. During milling in hydrogen, β-MgH2 and γ-MgH2 were produced. The formed β-MgH2 and γ-MgH2 are considered to have made the effects of reactive milling stronger as β-MgH2 and γ-MgH2 themselves were being pulverized. The introduced defects and the interfaces between the Mg and the phases formed during the reactive milling and during hydrogenation-dehydrogenation cycling are believed to serve as heterogeneous active nucleation sites for MgH2 and Mg-H solid solution. The phases generated during hydrogenation-dehydrognation cycling are also believed to prevent the particles from coalescing during hydrogenation-dehydrognation cycling.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1347
Author(s):  
Myoung Youp Song ◽  
Eunho Choi ◽  
Young Jun Kwak

Magnesium (Mg) has good hydrogen storage features except for its slow reaction kinetics with hydrogen and high hydride decomposition temperature. Yttria (Y2O3)-stabilized zirconia (ZrO2) (YSZ), nickel (Ni), and graphene were picked as additives to Mg to solve these problems. Samples with a composition of 92.5 wt% Mg + 2.5 wt% YSZ + 2.5 wt% Ni + 2.5 wt% graphene (designated as Mg + YSZ + Ni + graphene) were prepared by grinding in hydrogen atmosphere. The activation of Mg + YSZ + Ni + graphene was finished at the third cycle (n = 3). Mg + YSZ + Ni + graphene had an efficient hydrogen storage capacity (the amount of hydrogen absorbed for 60 min) over 7 wt% (7.11 wt%) at n = 1. Mg + YSZ + Ni + graphene contained Mg2Ni phase after cycling. The addition of Ni and Ni + YSZ greatly increased the initial hydride formation and decomposition rates, and the amount of hydrogen absorbed and released for 60 min, Ha (60 min) and Hd (60 min), respectively, of a 95 wt% Mg + 5 wt% graphene sample (Mg + graphene). Rapid nucleation of the Mg2Ni-H solid solution in Ni-containing samples is believed to have led to higher initial decomposition rates than Mg + graphene and Mg. The addition of YSZ also enhanced the initial decomposition rate and Hd (60 min) compared to a sample with a composition of 95 wt% Mg + 2.5 wt% Ni + 2.5 wt% graphene (Mg + Ni + graphene).


2008 ◽  
Author(s):  
Daniel A. Mosher ◽  
Susanne M. Opalka ◽  
Xia Tang ◽  
Bruce L. Laube ◽  
Ronald J. Brown ◽  
...  

Author(s):  
L. Scott Blankenship

Correction for ‘Cigarette butt-derived carbons have ultra-high surface area and unprecedented hydrogen storage capacity’ by L. Scott Blankenship et al., Energy Environ. Sci., 2017, 10, 2552–2562, DOI: 10.1039/C7EE02616A.


Author(s):  
Kuo-Wei Huang ◽  
Sudipta Chatterjee ◽  
Indranil Dutta ◽  
Yanwei Lum ◽  
Zhiping Lai

Formic acid has been proposed as a hydrogen energy carrier because of its many desirable properties, such as low toxicity and flammability, and a high volumetric hydrogen storage capacity of...


Sign in / Sign up

Export Citation Format

Share Document