scholarly journals Correction: Cigarette butt-derived carbons have ultra-high surface area and unprecedented hydrogen storage capacity

Author(s):  
L. Scott Blankenship

Correction for ‘Cigarette butt-derived carbons have ultra-high surface area and unprecedented hydrogen storage capacity’ by L. Scott Blankenship et al., Energy Environ. Sci., 2017, 10, 2552–2562, DOI: 10.1039/C7EE02616A.

2017 ◽  
Vol 10 (12) ◽  
pp. 2552-2562 ◽  
Author(s):  
Troy Scott Blankenship ◽  
Robert Mokaya

Cigarette butt derived carbons are highly porous (4310 m2 g−1 and 2.09 cm3 g−1) with record levels of hydrogen storage.


2012 ◽  
Vol 445 ◽  
pp. 571-576 ◽  
Author(s):  
Dervis E. Demirocak ◽  
Sarada Kuravi ◽  
Manoj K. Ram ◽  
Chand K. Jotshi ◽  
Sesha Srinivasan ◽  
...  

One of the biggest challenges for the commercial application of existing hydrogen storage materials is to meet the desired high volumetric and gravimetric hydrogen storage capacity and the ability to refuel quickly and repetitively as a safe transportation system at moderate temperature and pressure. In this work, we have synthesized polyaniline nanocomposites (PANI-NC) and hypercrosslinked polyaniline (PANI-HYP) materials to provide structure and composition which could meet the specific demands of a practical hydrogen storage system. Hydrogen sorption measurements showed that high surface area porous structure enhanced the storage capacity significantly at 77.3K and 1atm (i.e., 0.8wt% for PANI-HYP). However at 298K, storage capacity of all samples is less than 0.5wt% at 70 bar. Hydrogen sorption results along with the surface area measurements confirmed that hydrogen storage mechanism predominantly based on physisorption for polyaniline.


2004 ◽  
Vol 837 ◽  
Author(s):  
H. J. Chung ◽  
D. W. Lee ◽  
S. M. Jo ◽  
D. Y. Kim ◽  
W. S. Lee

ABSTRACTPoly(vinylidene fluoride) (PVdF) fine fiber of 200–300 nm in diameter was prepared through the electrospinning process. Dehydrofluorination of PVdF-based fibers for making infusible fiber was carried out using DBU, and the infusible PVdF-based nanofibers were then carbonized at 900–1800°C. The structural properties and morphologies of the resulting carbon nanofibers were investigated using XRD, Raman IR, SEM, TEM, and surface area & pore analysis. The PVdF-based carbon nanofibers had rough surfaces composed of 20-to 30-nm granular carbons, indicating their high surface area in the range of 400–970 m2/g. They showed amorphous structures. In the case of the highly ehydrofluorinated PVdF fiber, the resulting carbon fiber had a smoother surface, with d002 = 0.34–0.36 nm, and a very low surface area of 16–33 m2/g. The hydrogen storage capacities of the above carbon nano-fibers were measured, using the gravimetric method, by magnetic suspension balance (MSB), at room temperature and at 100 bars. The storage data were obtained after the buoyancy correction. The PVdF-based microporous carbon nanofibers showed a hydrogen storage capacity of 0.04–0.4 wt%. The hydrogen storage capacity depended on the dehydrofluorination of the PVdF nanofiber precursor, and on the carbonization temperatures.


2013 ◽  
Vol 66 (5) ◽  
pp. 548 ◽  
Author(s):  
Lufeng Yang ◽  
Chunlin Xie ◽  
Chaofan Hu ◽  
Mingtao Zheng ◽  
Haibo Wang ◽  
...  

A type of activated carbon that is further chemically activated to obtain a high surface area (~3322 m2 g–1) (hsAC), is loaded with nickel nanoparticles by a direct hydrothermal method, and tested for hydrogen storage. The chemical composition, crystal structure, and microstructure of hsAC with or without Ni loading are characterised in addition to the nitrogen absorbance isotherms. Hydrogen storage studies showed that metal doping has no effect on the cryogenic storage, and the maximum room temperature (RT) storage capacity through spillover on the Ni-doped hsAC materials achieved 0.79 wt-% at 30 Pa with enhancement factors of 2.93. The smaller catalyst size was a critical factor that determined the enhancement of RT storage capacity of the materials. The Ni catalyst size was controlled by the doped Ni content. Tuning the Ni catalyst size together with an optimum carbon spillover receptor should play an effective role in further enhancement by the spillover effect.


2013 ◽  
Vol 24 (15) ◽  
pp. 155603 ◽  
Author(s):  
Jie Li ◽  
Jing Lin ◽  
Xuewen Xu ◽  
Xinghua Zhang ◽  
Yanming Xue ◽  
...  

2011 ◽  
Vol 471-472 ◽  
pp. 1040-1045 ◽  
Author(s):  
Samaneh Shahgaldi ◽  
Zahira Yaakob ◽  
Dariush Jafar Khadem ◽  
Wan Ramli Wan Daud ◽  
Edy Herianto Majlan

In recent years, one dimensional nanostructure, nanowires, nanofibers with unique properties have been a subject of intense research due to reduction of devise dimension, potential properties from the re-arrangement at the molecular level and high surface area. There are many methods for synthesize such as laser ablation, chemical vapour deposition, solution method micro pulling down method but all these method faced to the major disadvantages of being complicated with long wasting time and relatively high expense . The electrospinning recently used for producing ceramic, metal, and carbon nanofibers. In this report, we incorporate palladium into silica nanofibers for the first time, and the effect of doping of palladium into the silica nanofibers is investigated. The different ratio of palladium to silica and comparing with silica nanofibers is also reported. The composition, morphology, structure and surface area of silica, and silica palladium nanofibers were investigated by thermo gravimetric analysis (TGA), x-ray diffraction (XRD), scanning electron microscopy (SEM),Fourier transform infrared spectroscopy (FT-IR), and Micromeriics. To the best of our knowledge, investigation on characteristic on Silica palladium nanofibers has not been reported up to now. The result reveal that the silica nanofibers compare to silica doped with palladium have lower diameter, and also by increasing the temperature above 600 °C, the reduction in length of nanofibers happened. High surface area of silica palladium nanofibers can be one of the promising materials for hydrogen storage.


Sign in / Sign up

Export Citation Format

Share Document