scholarly journals Facile synthesis of Ni3S2/rGO nanosheets composite on nickel foam as efficient electrocatalyst for hydrogen evolution reaction in alkaline media

2017 ◽  
Vol 33 (5) ◽  
pp. 519-527 ◽  
Author(s):  
Binhong He ◽  
Minjie Zhou ◽  
Zhaohui Hou ◽  
Gangyong Li ◽  
Yafei Kuang

Abstract

2019 ◽  
Vol 44 (39) ◽  
pp. 21683-21691 ◽  
Author(s):  
Xin-Yu Zhang ◽  
Bao-Yu Guo ◽  
Feng-Ting Li ◽  
Bin Dong ◽  
Jia-Qi Zhang ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1451
Author(s):  
Changhong Chen ◽  
Ningkang Qian ◽  
Junjie Li ◽  
Xiao Li ◽  
Deren Yang ◽  
...  

Ru is a key component of electrocatalysts for hydrogen evolution reaction (HER), especially in alkaline media. However, the catalytic activity and durability of Ru-based HER electrocatalysts are still far from satisfactory. Here we report a solvothermal approach for the synthesis of PdCuRu porous nanoplates with different Ru compositions by using Pd nanoplates as the seeds. The PdCuRu porous nanoplates were formed through underpotential deposition (UPD) of Cu on Pd, followed by alloying Cu with Pd through interdiffusion and galvanic replacement between Cu atoms and Ru precursor simultaneously. When evaluated as HER electrocatalysts, the PdCuRu porous nanoplates exhibited excellent catalytic activity and durability. Of them, the Pd24Cu29Ru47/C achieved the lowest overpotential (40.7 mV) and smallest Tafel slope (37.5 mV dec−1) in an alkaline solution (much better than commercial Pt/C). In addition, the Pd24Cu29Ru47/C only lost 17% of its current density during a stability test for 10 h, while commercial Pt/C had a 59.5% drop under the same conditions. We believe that the electron coupling between three metals, unique porous structure, and strong capability of Ru for water dissociation are responsible for such an enhancement in HER performance.


2017 ◽  
Vol 53 (80) ◽  
pp. 11048-11051 ◽  
Author(s):  
Ya Zhang ◽  
Yiwei Liu ◽  
Min Ma ◽  
Xiang Ren ◽  
Zhiang Liu ◽  
...  

A Mn-doped Ni2P nanosheet array on nickel foam (Mn-Ni2P/NF) acts as a high-efficiency and durable electrocatalyst for the hydrogen evolution reaction in 1.0 M KOH, driving 20 mA cm−2 at an overpotential of 103 mV, which is 82 mV less than that for Ni2P/NF.


2021 ◽  
Author(s):  
Aleksandar Jovanović ◽  
Lazar Bijelić ◽  
Ana Dobrota ◽  
Natalia Skorodumova ◽  
Slavko Mentus ◽  
...  

Energy-efficient hydrogen production is one of the key factors for advancing the hydrogen-based economy. Alkaline water electrolysis is the main route for the production of high-purity hydrogen, but further improvements of hydrogen evolution reaction (HER) catalysts are still needed. Industrial alkaline electrolysis relies on Ni-based catalysts, and here we describe a drastic improvement of HER activity of Ni in alkaline media using several model catalysts for HER obtained upon nickel surface modification in aqueous solution of rhodium salts, when a spontaneous deposition of rhodium takes place based on the chemical displacement reaction 3Ni + 2Rh3+ = 3Ni2+ + 2Rh. In the case of smooth Ni-poly electrodes, HER activity surpasses the activity of Pt-poly already after 30 s of exchange with Rh. SEM analysis showed that Rh is uniformly distributed, while surface roughness changes within 10%, agreeing with electrochemical measurements. Furthermore, XPS analysis has shown effective incorporation of Rh in the surface, while DFT calculations suggest that hydrogen binding is significantly weakened on the Rh-modified Ni surfaces. Such tuning of the hydrogen binding energy is seen as the main factor governing HER activity improvements. The same galvanic displacement protocols were employed for nickel foam electrodes and electrodeposited Ni on Ti mesh. In both cases, somewhat longer Rh exchange times are needed to obtain superior activities than for the smooth Ni surface, but up to 10 min. HER overpotential corresponding to −10 mA cm−2 for nickel foam and electrodeposited Ni electrodes, after modification with Rh, amounted to only −0.07 and −0.09 V, respectively. Thus, it is suggested that a fast spontaneous displacement of Ni with Rh could effectively boost HER in alkaline media with minor cost penalties compared to energy saving in the electrolysis process.


2021 ◽  
pp. 138985
Author(s):  
Xuerui Yi ◽  
Xiaobo He ◽  
Fengxiang Yin ◽  
Guoru Li ◽  
Zhichun Li

2021 ◽  
pp. 158597
Author(s):  
Yongming Zhang ◽  
Jing Zou ◽  
Zemin He ◽  
Yuzhen Zhao ◽  
Xiaoxi Kang ◽  
...  

2021 ◽  
Author(s):  
Nanasaheb M. Shinde ◽  
Siddheshwar D. Raut ◽  
Balaji G. Ghule ◽  
Krishna Chaitanya Gunturu ◽  
James J. Pak ◽  
...  

A promising electrode for hydrogen evolution reaction (HER) has been prepared via a reduction process to form NiF2 nanorod arrays directly grown on a 3D nickel foam.


Sign in / Sign up

Export Citation Format

Share Document