Determination of the barrier height of iridium with hydrogen-terminated single crystal diamond

2019 ◽  
Vol 9 (01) ◽  
pp. 165-169
Author(s):  
Yan-Feng Wang ◽  
Wei Wang ◽  
Xiaohui Chang ◽  
Juan Wang ◽  
Jiao Fu ◽  
...  

Abstract

MRS Bulletin ◽  
2014 ◽  
Vol 39 (6) ◽  
pp. 504-510 ◽  
Author(s):  
Matthias Schreck ◽  
Jes Asmussen ◽  
Shinichi Shikata ◽  
Jean-Charles Arnault ◽  
Naoji Fujimori

Abstract


2017 ◽  
Vol 50 (1) ◽  
pp. 76-86 ◽  
Author(s):  
M. Guthrie ◽  
C. G. Pruteanu ◽  
M.-E. Donnelly ◽  
J. J. Molaison ◽  
A. M. dos Santos ◽  
...  

As artificial diamond becomes more cost effective it is likely to see increasing use as a window for sample environment equipment used in diffraction experiments. Such windows are particularly useful as they exhibit exceptional mechanical properties in addition to being highly transparent to both X-ray and neutron radiation. A key application is in high-pressure studies, where diamond anvil cells (DACs) are used to access extreme sample conditions. However, despite their utility, an important consideration when using single-crystal diamond windows is their interaction with the incident beam. In particular, the Bragg condition will be satisfied for specific angles and wavelengths, leading to the appearance of diamond Bragg spots on the diffraction detectors but also, unavoidably, to loss of transmitted intensity of the beam that interacts with the sample. This effect can be particularly significant for energy-dispersive measurements, for example, in time-of-flight neutron diffraction work using DACs. This article presents a semi-empirical approach that can be used to correct for this effect, which is a prerequisite for the accurate determination of diffraction intensities.


2020 ◽  
Author(s):  
Keishiro Yamashita ◽  
Kazuki Komatsu ◽  
Hiroyuki Kagi

An crystal-growth technique for single crystal x-ray structure analysis of high-pressure forms of hydrogen-bonded crystals is proposed. We used alcohol mixture (methanol: ethanol = 4:1 in volumetric ratio), which is a widely used pressure transmitting medium, inhibiting the nucleation and growth of unwanted crystals. In this paper, two kinds of single crystals which have not been obtained using a conventional experimental technique were obtained using this technique: ice VI at 1.99 GPa and MgCl<sub>2</sub>·7H<sub>2</sub>O at 2.50 GPa at room temperature. Here we first report the crystal structure of MgCl2·7H2O. This technique simultaneously meets the requirement of hydrostaticity for high-pressure experiments and has feasibility for further in-situ measurements.


2021 ◽  
Vol 1 (1) ◽  
pp. 143-149
Author(s):  
Wei Cao ◽  
Deng Gao ◽  
Hongyang Zhao ◽  
Zhibin Ma

Sign in / Sign up

Export Citation Format

Share Document