Metal-Organic Frameworks for Asymmetric Catalysis and Chiral Separations

MRS Bulletin ◽  
2007 ◽  
Vol 32 (7) ◽  
pp. 544-548 ◽  
Author(s):  
Wenbin Lin

Metal-organic frameworks (MOFs) are an interesting class of molecule-based hybrid materials built from metal-connecting points and bridging ligands. MOFs have received much attention, owing to their potential impact on many technological areas, including gas storage, separation, and heterogeneous catalysis. The modular nature of MOFs endows them with facile tunability, and as a result, properly designed MOFs can yield ideal heterogeneous catalysts with uniform active sites through judicious choice of the building blocks. Homochiral MOFs, which can be prepared by numerous approaches (construction from achiral components by seeding with a chiral single crystal, templating with coordinating chiral co-ligands, and building from metal-connecting nodes and chiral bridging ligands), represent a unique class of materials for the economical production of optically pure compounds, whether through asymmetric catalysis or enantioselective inclusion of chiral guest molecules in their porous frameworks. As such, homochiral MOFs promise new opportunities for developing chirotechnology. This contribution provides a brief overview of recent progress in the synthesis of homochiral porous MOFs and their applications in asymmetric catalysis and chiral separations.

2018 ◽  
Vol 5 (7) ◽  
pp. 1512-1523 ◽  
Author(s):  
Andreea Gheorghe ◽  
Martijn A. Tepaske ◽  
Stefania Tanase

Homochiral metal–organic frameworks (HMOFs) are attractive materials for asymmetric catalysis because they possess high surface area and uniform active sites.


Author(s):  
Feijie Song ◽  
Teng Zhang ◽  
Cheng Wang ◽  
Wenbin Lin

Metal-organic frameworks (MOFs) are a class of organic–inorganic hybrid materials built from metal-connecting nodes and organic-bridging ligands. They have received much attention in recent years owing to the ability to tune their properties for potential applications in various areas. Properly designed MOFs with uniform, periodically aligned active sites have shown great promise in catalysing shape-, size-, chemo-, regio- and stereo-selective organic transformations. This study reports the synthesis and characterization of two chiral MOFs (CMOFs 1 and 2 ) that are constructed from Mn-salen-derived dicarboxylic acids [salen is ( R , R )- N , N ′-bis(5- tert -butylsalicylidene)-1,2-cyclohexanediamine], bis(4-vinylbenzoic acid)-salen manganese(III) chloride (H 2 L 4 ) or bis(benzoic acid)-salen manganese(III) chloride (H 2 L 3 ) and [Zn 4 (μ 4 -O)(O 2 CR) 6 ] or [Zn 5 (H 2 O) 2 (μ 3 -OH) 2 (O 2 CR) 8 ] secondary building units (SBUs), respectively. The SBUs in CMOF- 1 are connected by the linear ditopic Mn-salen-derived linkers to construct a fourfold interpenetrated isoreticular MOF (IRMOF) structure with pcu topology. In CMOF- 2 , the Mn-salen centres dimerize in a cross-linking way to form a diamondoid structure with threefold interpenetration. CMOF- 1 was examined for highly regio- and stereo-selective tandem alkene epoxidation/epoxide ring-opening reactions by using the Mn-salen andZn 4 (μ 4 -O)(carboxylate) 6 active sites, respectively. Our work demonstrated the potential utility of chiral MOFs with multiple active sites in the efficient synthesis of complex molecules with excellent regio- and stereo-controls


2020 ◽  
Vol 984 ◽  
pp. 195-204
Author(s):  
Meng Xi Zhang

Chiral metal-organic frameworks (CMOFs) have shown great promises in the applications of asymmetric catalysis with highly enantioselective. Herein, we briefly overview recent processes of MOF-based asymmetric catalysts based on a classification of reaction types. And we mainly focus on the structures and compositions of the active sites in these catalysts and their performances in specific reactions. In addition, some of their important unique features are critically emphasized alongside. Challenges of the future research are discussed also at the end of this review.


2022 ◽  
Author(s):  
Qianqian Liang ◽  
Hua Cheng ◽  
Chengwen Li ◽  
Liangmin Ning ◽  
Liming Shao

Organic and inorganic building blocks construct a class of metal-organic frameworks (MOFs) that exhibit tremendous chemical tunability. In this study, a novel Zirconium-based MOF UiO-66-(alkyne)2 with a di-alkyne tag was...


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1445
Author(s):  
Francisco G. Cirujano ◽  
Rafael Luque ◽  
Amarajothi Dhakshinamoorthy

Metal–organic frameworks (MOFs) have become one of the versatile solid materials used for a wide range of applications, such as gas storage, gas separation, proton conductivity, sensors and catalysis. Among these fields, one of the more well-studied areas is the use of MOFs as heterogeneous catalysts for a broad range of organic reactions. In the present review, the employment of MOFs as solid catalysts for the Henry reaction is discussed, and the available literature data from the last decade are grouped. The review is organized with a brief introduction of the importance of Henry reactions and structural properties of MOFs that are suitable for catalysis. The second part of the review discusses the use of MOFs as solid catalysts for the Henry reaction involving metal nodes as active sites, while the third section provides data utilizing basic sites (primary amine, secondary amine, amides and urea-donating sites). While commenting on the catalytic results in these two sections, the advantage of MOFs over other solid catalysts is compared in terms of activity by providing turnover number (TON) values and the structural stability of MOFs during the course of the reaction. The final section provides our views on further directions in this field.


2021 ◽  
Vol 9 ◽  
Author(s):  
Kranthi Kumar Gangu ◽  
Sreekantha B. Jonnalagadda

Metal-organic frameworks (MOFs) have emerged as versatile candidates of interest in heterogeneous catalysis. Recent research and developments with MOFs positively endorse their role as catalysts in generating invaluable organic compounds. To harness the full potential of MOFs in value-added organic transformation, a comprehensive look at how these materials are likely to involve in the catalytic processes is essential. Mainstays of MOFs such as metal nodes, linkers, encapsulation materials, and enveloped structures tend to produce capable catalytic active sites that offer solutions to reduce human efforts in developing new organic reactions. The main advantages of choosing MOFs as reusable catalysts are the flexible and robust skeleton, regular porosity, high pore volume, and accessible synthesis accompanied with cost-effectiveness. As hosts for active metals, sole MOFs, modified MOFs, and MOFs have made remarkable advances as solid catalysts. The extensive exploration of the MOFs possibly led to their fast adoption in fabricating new biological molecules such as pyridines, quinolines, quinazolinones, imines, and their derivatives. This review covers the varied MOFs and their catalytic properties in facilitating the selective formation of the product organic moieties and interprets MOF’s property responsible for their elegant performance.


IUCrJ ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 681-687 ◽  
Author(s):  
Sojin Oh ◽  
Jeehyun Park ◽  
Moonhyun Oh

The structural dimension of metal–organic frameworks (MOFs) is of great importance in defining their properties and thus applications. In particular, 2D layered MOFs are of considerable interest because of their useful applications, which are facilitated by unique structural features of 2D materials, such as a large number of open active sites and high surface areas. Herein, this work demonstrates a methodology for the selective synthesis of a 2D layered MOF in the presence of the competitive formation of a 3D MOF. The ratio of the reactants, metal ions and organic building blocks used during the reaction is found to be critical for the selective formation of a 2D MOF, and is associated with its chemical composition. In addition, the well defined and uniform micro-sized 2D MOF particles are successfully synthesized in the presence of an ultrasonic dispersion. Moreover, the laminated 2D MOF layers are directly synthesized via a modified bottom-up lamination method, a combination of chemical and physical stimuli, in the presence of surfactant and ultrasonication.


Sign in / Sign up

Export Citation Format

Share Document