Solar Spectrum Splitting Parallel Junction High Efficiency Concentrating Photovoltaics

2012 ◽  
Vol 1391 ◽  
Author(s):  
Lirong Z. Broderick ◽  
Marco Stefancich ◽  
Dario Roncati ◽  
Brian R. Albert ◽  
Xing Sheng ◽  
...  

ABSTRACTA compact, single element concentrator comprising a near linear array of prisms has been designed to simultaneously split and concentrate the solar spectrum. Laterally aligned solar cells with different bandgaps are devised to be fabricated on a common Si substrate, with each cell absorbing a different spectral band optimized for highest overall power conversion efficiency. Epitaxial Ge on Si is used as a low cost virtual substrate for III-V materials growth. Assuming no optical loss for the prism concentrator, no shadowing and perfect carrier collection for the solar cells, simulations show that 39% efficiency can be achieved for a parallel four-junction (4PJ) InGaP-GaAs-Si-Ge cell under 200X concentration, and higher efficiency is possible with more junctions.

2014 ◽  
Vol 1 (3-4) ◽  
Author(s):  
Nikhil Jain ◽  
Mantu K. Hudait

AbstractAchieving high-efficiency solar cells and at the same time driving down the cell cost has been among the key objectives for photovoltaic researchers to attain a lower levelized cost of energy (LCOE). While the performance of silicon (Si) based solar cells have almost saturated at an efficiency of ~25%, III–V compound semiconductor based solar cells have steadily shown performance improvement at ~1% (absolute) increase per year, with a recent record efficiency of 44.7%. Integration of such high-efficiency III–V multijunction solar cells on significantly cheaper and large area Si substrate has recently attracted immense interest to address the future LCOE roadmaps by unifying the high-efficiency merits of III–V materials with low-cost and abundance of Si. This review article will discuss the current progress in the development of III–V multijunction solar cell integration onto Si substrate. The current state-of-the-art for III–V-on-Si solar cells along with their theoretical performance projections is presented. Next, the key design criteria and the technical challenges associated with the integration of III–V multijunction solar cells on Si are reviewed. Different technological routes for integrating III–V solar cells on Si substrate through heteroepitaxial integration and via mechanical stacking approach are presented. The key merits and technical challenges for all of the till-date available technologies are summarized. Finally, the prospects, opportunities and future outlook toward further advancing the performance of III–V-on-Si multijunction solar cells are discussed. With the plummeting price of Si solar cells accompanied with the tremendous headroom available for improving the III–V solar cell efficiencies, the future prospects for successful integration of III–V solar cell technology onto Si substrate look very promising to unlock an era of next generation of high-efficiency and low-cost photovoltaics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jaya Madan ◽  
Karanveer Singh ◽  
Rahul Pandey

AbstractThe major losses that limit the efficiency of a single-junction solar cell are thermalization loss and transmission loss. Thus, to efficiently utilize the full solar spectrum and to mitigate these losses, tandem solar cells (TSC) have significantly impacted the photovoltaic (PV) landscape. In this context, the research on perovskite/silicon tandems is currently dominating the research community. The stability improvements of perovskite materials and mature fabrication techniques of silicon have underpinned the rapid progress of perovskite/silicon TSC. However, the low absorption coefficient and high module cost of the silicon are the tailbacks for the mass production of perovskite/silicon TSCs. Therefore, PV technology demands to explore some new materials other than Si to be used as absorber layer in the bottom cell. Thus, here in this work, to mitigate the aforementioned losses and to reduce cost, a 23.36% efficient two-terminal perovskite-PbS CQD monolithic tandem solar cell has been designed through comprehensive device simulations. Before analyzing the performance of the proposed TSC, the performance of perovskite top cells has been optimized in terms of variation in optical properties, thickness, and interface defect density under standalone conditions. Thereafter, filtered spectrum and associated integrated filtered power by the top cell at different perovskite thickness from 50 to 500 nm is obtained to conceive the presence of the top cell above the bottom cell with different perovskite thickness. The current matching by concurrently varying the thickness of both the top and bottom subcell has also been done to obtain the maximum deliverable tandem JSC for the device under consideration. The top/bottom subcell with current matched JSC of 16.68 mA cm−2/16.62 mA cm−2 showed the conversion efficiency of 14.60%/9.07% under tandem configuration with an optimized thickness of 143 nm/470 nm, where the top cell is simulated under AM1.5G spectrum, and bottom cell is exposed to the spectrum filtered by 143 nm thick top cell. Further, the voltages at equal current points are added together to generate tandem J–V characteristics. This work concludes a 23.36% efficient perovskite-PbS CQD tandem design with 1.79 V (VOC), 16.67 mA cm−2 (JSC) and 78.3% (FF). The perovskite-PbS CQD tandem device proposed in this work may pave the way for the development of high-efficiency tandem solar cells for low-cost applications.


2012 ◽  
Vol 2012 ◽  
pp. 1-21 ◽  
Author(s):  
Yuancheng Qin ◽  
Qiang Peng

Dye-sensitized solar cells (DSSCs) have attracted considerable attention in recent years due to the possibility of low-cost conversion of photovoltaic energy. The DSSCs-based ruthenium complexes as sensitizers show high efficiency and excellent stability, implying potential practical applications. This review focuses on recent advances in design and preparation of efficient ruthenium sensitizers and their applications in DSSCs, including thiocyanate ruthenium sensitizers and thiocyanate-free ruthenium sensitizers.


2012 ◽  
Vol 2012 ◽  
pp. 1-1 ◽  
Author(s):  
J. Yi ◽  
Eicke R. Weber ◽  
C. W. Lan ◽  
Stephen Bremner ◽  
D. H. Kim
Keyword(s):  

Author(s):  
Li Zhang ◽  
Hui Li ◽  
Jing Zhuang ◽  
Yigang Luan ◽  
Sixuan Wu ◽  
...  

The low-cost material antimony trifluoride (SbF3) was doped into the commonly used tin dioxide (SnO2) for the first time, and the SbF3-doped SnO2 as an electron transport layer (ETL) was...


Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 964 ◽  
Author(s):  
Yue Zhang ◽  
Haiming Zhang ◽  
Xiaohui Zhang ◽  
Lijuan Wei ◽  
Biao Zhang ◽  
...  

Organic–inorganic hybrid perovskite solar cells (PSCs) have made immense progress in recent years, owing to outstanding optoelectronic properties of perovskite materials, such as high extinction coefficient, carrier mobility, and low exciton binding energy. Since the first appearance in 2009, the efficiency of PSCs has reached 23.3%. This has made them the most promising rival to silicon-based solar cells. However, there are still several issues to resolve to promote PSCs’ outdoor applications. In this review, three crucial aspects of PSCs, including high efficiency, environmental stability, and low-cost of PSCs, are described in detail. Recent in-depth studies on different aspects are also discussed for better understanding of these issues and possible solutions.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Guiming Peng ◽  
Xueqing Xu ◽  
Gang Xu

The ramping solar energy to electricity conversion efficiencies of hybrid organic-inorganic perovskite solar cells during the last five years have opened new doors to low-cost solar energy. The record power conversion efficiency has climbed to 19.3% in August 2014 and then jumped to 20.1% in November. In this review, the main achievements for perovskite solar cells categorized from a viewpoint of device structure are overviewed. The challenges and prospects for future development of this field are also briefly presented.


Sign in / Sign up

Export Citation Format

Share Document