Culturing Cells on Flexible Substrates of High Refractive Indexes

2012 ◽  
Vol 1418 ◽  
Author(s):  
You-Ren Liu ◽  
Po-Ling Kuo

ABSTRACTMechanical cues in cellular microenvironment are central in directing a class of cellular behaviors such as the dynamic of cell adhesion, migration, and differentiation. Several advanced optical techniques, such as structured-illumination nano-profilometry (SINAP), have been developed for a better resolution of these dynamic processes. These techniques however require culturing cells on materials of refractive index close to that of glass, while most studies regarding the effects of mechanical cues on cellular dynamics were conducted on hydrogel-based substrates. Here we report the development of culturing substrates of tunable rigidity and refractive index suitable for SINAP studies. Polyvinyl chloride (PVC)-based substrates were mixed with a softener called Di(isononyl) Cyclohexane-1,2-Dicarboxylate (DINCH) and cured by heating. The volume ratios of PVC to DINCH were varied from 1:1 to 3:1. The Young’s modulus of the resulting substrates ranged from 18 kPa to 40 kPa. The yielded refractive indices of the composite substrates as measured by phase contrast tomography ranged from 1.47 to 1.53. Human lung adenocarcinoma cells CL1-5 were cultured on the composite substrates and cell viability was examined using the MTT assay. The dynamics of cell adhesion and filopodia activities were examined using SINAP. Preliminary results suggest that PVC based culturing substrates have a great potential in the application of SINAP based studies.

2017 ◽  
Vol 44 (4) ◽  
pp. 1337-1351 ◽  
Author(s):  
Xia Wang ◽  
Long Li ◽  
Ruijuan Guan ◽  
Danian Zhu ◽  
Nana Song ◽  
...  

Background/Aims: Extracellular ATP performs multiple important functions via activation of P2 receptors on the cell surface. P2Y receptors play critical roles in ATP evoked response in human lung adenocarcinoma cells (A549 cells). Emodin is an anthraquinone derivative originally isolated from Chinese rhubarb, possesses anticancer properties. In this study we examined the inhibiting effects of emodin on proliferation, migration and epithelial-mesenchymal transition (EMT) by suppressing P2Y receptors-dependent Ca2+ increase and nuclear factor-κB (NF-KB) signaling in A549 cells. Methods: A549 cells were pretreated with emodin before stimulation with ATP for the indicated time. Then, intracellular Ca2+ concentration ([Ca2+]i) was measured by Fluo-8/AM staining. Cell proliferation and cell cycle progression were tested by CCK8 assay and flow cytometry In addition, wound healing and western blot were performed to determine cell migration and related protein levels (Bcl-2, Bax, claudin-1, NF-κB). Results: Emodin blunted ATP/UTP-induced increase of [Ca2+]i and cell proliferation concentration-dependently Meanwhile, it decreased ATP-induced cells accumulation in the S phase. Furthermore, emodin altered protein abundance of Bcl-2, Bax and claudin-1 and attenuated EMT caused by ATP. Such ATP-induced cellular reactions were also inhibited by a nonselective P2Y receptors antagonist, suramin, in a similar way to emodin. Besides, emodin could inhibit activation of NF-κB, thus suppressed ATP-induced proliferation, migration and EMT. Conclusion: Our results demonstrated that emodin inhibits ATP-induced proliferation, migration, EMT by suppressing P2Y receptors-mediated [Ca2+]i increase and NF-κB signaling in A549 cells.


Sign in / Sign up

Export Citation Format

Share Document