Electrochromics and Thermochromics for Energy Efficient Fenestration: New Applications Based on Transparent Conducting Nanoparticles

2013 ◽  
Vol 1558 ◽  
Author(s):  
C. G. Granqvist ◽  
İ. Bayrak Pehlivan ◽  
Y.-X. Ji ◽  
S.-Y. Li ◽  
E. Pehlivan ◽  
...  

ABSTRACTThis paper summarizes some recent advances for electrochromic and thermochromic fenestration. For the former application, we consider a polymer-laminated construction and show that the addition of nanoparticles to the electrolyte can enhance its ionic conductivity (with fumed silica) and quench the near-infrared transmittance which transmits solar energy but is not important for visible light (with ITO nanoparticles). Regarding thermochromics, we discuss recent experimental and theoretical work on Mg-doped VO2, where the doping lowers the luminous absorptance, and on measurements applied to Al2O3-coated VO2 with good stability with regard to high-temperature treatment.

2019 ◽  
Vol 126 (1) ◽  
pp. 68
Author(s):  
C. Miller ◽  
L. Puust ◽  
V. Kiisk ◽  
E. Ekimov ◽  
I. Vlasov ◽  
...  

AbstractDiamond microcrystals containing silicon-vacancy (SiV) defects were synthesized by using a high-pressure high-temperature treatment of a mixture of pertinent organic-inorganic precursors. Photoluminescence of the SiV defects and its temperature dependence (80–400 K) was studied. A strong sharp zero-phonon line (ZPL) at 738 nm was recorded at all temperatures under 488 nm laser excitation. In particular the thermally induced shift of the ZPL was found promising for optical temperature sensing in the near infrared spectral range at biomedically relevant temperatures.


2018 ◽  
Vol 190 ◽  
pp. 04024
Author(s):  
Caius Miller ◽  
Laurits Puust ◽  
Valter Kiisk ◽  
Evgeny Ekimov ◽  
Igor Vlasov ◽  
...  

SiV-containing microcrystals of diamond are synthesised by using high-pressure high-temperature treatment of a mixture of pertinent organic-inorganic precursors. Photoluminescence of SiV defects were investigated with the aim to use the microcrystals for optical temperature sensing in near infrared at room temperature based on temperature-dependent shift of the 740 nm zero-phonon line of SiV photoemission.


2020 ◽  
Vol 225 ◽  
pp. 106862 ◽  
Author(s):  
Qingzhen Guo ◽  
Haijian Su ◽  
Jiawei Liu ◽  
Qian Yin ◽  
Hongwen Jing ◽  
...  

Plant Disease ◽  
2008 ◽  
Vol 92 (12) ◽  
pp. 1695-1700 ◽  
Author(s):  
A. Murillo-Williams ◽  
G. P. Munkvold

Fusarium verticillioides causes seedling decay, stalk rot, ear rot, and mycotoxin contamination (primarily fumonisins) in maize. Systemic infection of maize plants by F. verticillioides can lead to kernel infection, but the frequency of this phenomenon has varied widely among experiments. Variation in the incidence of systemic infection has been attributed to environmental factors. In order to better understand the influence of environment, we investigated the effect of temperature on systemic development of F. verticillioides during vegetative and reproductive stages of plant development. Maize seeds were inoculated with a green fluorescent protein-expressing strain of F. verticillioides, and grown in growth chambers under three different temperature regimes. In the vegetative-stage and reproductive-stage experiments, plants were evaluated at tasseling (VT stage), and at physiological maturity (R6 stage), respectively. Independently of the temperature treatment, F. verticillioides was reisolated from nearly 100% of belowground plant tissues. Frequency of reisolation of the inoculated strain declined acropetally in aboveground internodes at all temperature regimes. At VT, the high-temperature treatment had the highest systemic development of F. verticillioides in aboveground tissues. At R6, incidence of systemic infection was greater at both the high- and low-temperature regimes than at the average-temperature regime. F. verticillioides was isolated from higher internodes in plants at R6, compared to stage VT. The seed-inoculated strain was recovered from kernels of mature plants, although incidence of kernel infection did not differ significantly among treatments. During the vegetative growth stages, temperature had a significant effect on systemic development of F. verticillioides in stalks. At R6, the fungus reached higher internodes in the high-temperature treatment, but temperature did not have an effect on the incidence of kernels (either symptomatic or asymptomatic) or ear peduncles infected with the inoculated strain. These results support the role of high temperatures in promoting systemic infection of maize by F. verticillioides, but plant-to-seed transmission may be limited by other environmental factors that interact with temperature during the reproductive stages.


Sign in / Sign up

Export Citation Format

Share Document