Development of AlAsSb as a barrier material for ultra-thin-channel InGaAs nMOSFETs

2013 ◽  
Vol 1561 ◽  
Author(s):  
Cheng-Ying Huang ◽  
Jeremy J. M. Law ◽  
Hong Lu ◽  
Mark J. W. Rodwell ◽  
Arthur C. Gossard

ABSTRACTWe investigated AlAs0.56Sb0.44 epitaxial layers lattice-matched to InP grown by molecular beam epitaxy (MBE). Silicon (Si) and tellurium (Te) were studied as n-type dopants in AlAs0.56Sb0.44 material. Similar to most Sb-based materials, AlAs0.56Sb0.44 demonstrates a maximum active carrier concentration around low-1018 cm-3 when using Te as a dopant. We propose the use of a heavily Si-doped InAlAs layer embedded in the AlAsSb barrier as a modulation-doped layer. The In0.53Ga0.47As/AlAs0.56Sb0.44 double heterostructures with a 10 nm InGaAs well show an electron mobility of about 9400 cm2/V・s at 295 K and 32000 cm2/V・s at 46 K. A thinner 5 nm InGaAs well has an electron mobility of about 4300 cm2/V・s at 295 K. This study demonstrates that AlAs0.56Sb0.44 is a promising barrier material for highly scaled InGaAs MOSFETs and HEMTs.

2022 ◽  
Vol 355 ◽  
pp. 03047
Author(s):  
Hailong Yu ◽  
Hanchao Gao ◽  
Wei Wang ◽  
Ben Ma ◽  
Zhijun Yin ◽  
...  

InP and InGaAs epitaxial layers on InP substrates using molecular beam epitaxy (MBE) have been studied. Carrier concentration and mobility of InP and InGaAs are found that are strongly correlated with the growth temperature and V/III ratio. The InGaAs layers using As2 were compared with the layers grown using As4 from a Riber standard cracker cell. When As4 is used, the highest electron mobility of InGaAs is 3960 cm2/(V·s) with the V/III ratio of 65. When converted to As2, the V/III ratio with the highest electron mobility decreased to 20. With the arsenic cracker temperature decreased from 950 ℃ to 830 ℃, the electron mobility increased from 4090 cm2/(V • s) to 5060 cm2/(V • s).


2000 ◽  
Vol 76 (24) ◽  
pp. 3549-3551 ◽  
Author(s):  
T. Makino ◽  
C. H. Chia ◽  
N. T. Tuan ◽  
Y. Segawa ◽  
M. Kawasaki ◽  
...  

1985 ◽  
Vol 56 ◽  
Author(s):  
H. ZOGG ◽  
P. MAIER ◽  
P. NORTON

AbstractGraded (Ca,Ba)F2 layers consisting of near lattice matched CaF2 at the Si interface and of BaF2 with 14% increased lattice constant at the top surface were grown by molecular beam epitaxy (MBE) on Si(111). Smooth and crackfree layers exhibiting Rutherford backscattering (RBS) channeling minima below 5% were obtained. Device quality epitaxial layers of PbTe, PbSe and (Pb,Sn)Se were grown on top of these structures. Mechanical stress at 300K was relaxed by athermal mechanisms in the fluoride- as well as in the Pb-salt films. - In preliminary runs, epitaxial CdTe-layers were obtained on Si(111) using the same fluoride-buffer film technique and which showed clear SEM electron channeling patterns.


2013 ◽  
Vol 114 (10) ◽  
pp. 103504 ◽  
Author(s):  
M. P. Lumb ◽  
M. K. Yakes ◽  
M. González ◽  
J. G. Tischler ◽  
R. J. Walters

Sign in / Sign up

Export Citation Format

Share Document