Contact Angles in Imaginary Number Space: A Novel Tool for Probing the Remaining Mysteries of Ultrahydrophilicity and Superhydrophilicity.

2014 ◽  
Vol 1648 ◽  
Author(s):  
Herbert P. Jennissen

ABSTRACTImaginary contact angles underlying hyperhydrophilicity and the Inverse Lotus Effect introduce a fundamental new development in the area of contact angles and wettability. Just as the Lotus Effect expanded hydrophobicity beyond the maximal contact angle of 119° on a smooth surface, the Inverse Lotus Effect expands hydrophilicity beyond the minimal contact angle of 0° on a smooth surface. Imaginary dynamic contact angles thus offer an exciting enhancement in tools and methodology for measuring the wettability on rough, highly hydrophilic surfaces. Contrary to current thinking, full or perfect wetting of rough surfaces is only little understood and cannot be predicted by classical equations. Therefore also the exact physical basis of imaginary dynamic contact angles remains to be elucidated. In this short treatise some aspects of the new field will be treated with examples derived from rough titanium surfaces employed in the medical field.

Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 405
Author(s):  
Nicola Suzzi ◽  
Giulio Croce

The bifurcation analysis of a film falling down an hybrid surface is conducted via the numerical solution of the governing lubrication equation. Instability phenomena, that lead to film breakage and growth of fingers, are induced by multiple contamination spots. Contact angles up to 75∘ are investigated due to the full implementation of the free surface curvature, which replaces the small slope approximation, accurate for film slope lower than 30∘. The dynamic contact angle is first verified with the Hoffman–Voinov–Tanner law in case of a stable film down an inclined plate with uniform surface wettability. Then, contamination spots, characterized by an increased value of the static contact angle, are considered in order to induce film instability and several parametric computations are run, with different film patterns observed. The effects of the flow characteristics and of the hybrid pattern geometry are investigated and the corresponding bifurcation diagram with the number of observed rivulets is built. The long term evolution of induced film instabilities shows a complex behavior: different flow regimes can be observed at the same flow characteristics under slightly different hybrid configurations. This suggest the possibility of controlling the rivulet/film transition via a proper design of the surfaces, thus opening the way for relevant practical application.


Author(s):  
Eiji Ishii ◽  
Taisuke Sugii

Predicting the spreading behavior of droplets on a wall is important for designing micro/nano devices used for reagent dispensation in micro-electro-mechanical systems, printing processes of ink-jet printers, and condensation of droplets on a wall during spray forming in atomizers. Particle methods are useful for simulating the behavior of many droplets generated by micro/nano devices in practical computational time; the motion of each droplet is simulated using a group of particles, and no particles are assigned in the gas region if interactions between the droplets and gas are weak. Furthermore, liquid-gas interfaces obtained from the particle method remain sharp by using the Lagrangian description. However, conventional surface tension models used in the particle methods are used for predicting the static contact angle at a three-phase interface, not for predicting the dynamic contact angle. The dynamic contact angle defines the shape of a spreading droplet on a wall. We previously developed a surface tension model using inter-particle force in the particle method; the static contact angle of droplets on the wall was verified at various contact angles, and the heights of droplets agreed well with those obtained theoretically. In this study, we applied our surface tension model to the simulation of a spreading droplet on a wall. The simulated dynamic contact angles for some Weber numbers were compared with those measured by Šikalo et al, and they agreed well. Our surface tension model was useful for simulating droplet motion under static and dynamic conditions.


1977 ◽  
Vol 62 (2) ◽  
pp. 205-212 ◽  
Author(s):  
Rulon E Johnson ◽  
Robert H Dettre ◽  
Dale A Brandreth

2018 ◽  
Author(s):  
M. Elsharafi ◽  
K. Vidal ◽  
R. Thomas

Contact angle measurements are important to determine surface and interfacial tension between solids and fluids. A ‘water-wet’ condition on the rock face is necessary in order to extract oil. In this research, the objectives are to determine the wettability (water-wet or oil-wet), analyze how different brine concentrations will affect the wettability, and study the effect of the temperature on the dynamic contact angle measurements. This will be carried out by using the Cahn Dynamic Contact Angle. Analyzer DCA 315 to measure the contact angle between different fluids such as surfactant, alkaline, and mineral oil. This instrument is also used to measure the surface properties such as surface tension, contact angle, and interfacial tension of solid and liquid samples by using the Wilhelmy technique. The work used different surfactant and oil mixed with different alkaline concentrations. Varying alkaline concentrations from 20ml to 1ml were used, whilst keeping the surfactant concentration constant at 50ml.. It was observed that contact angle measurements and surface tension increase with increased alkaline concentrations. Therefore, we can deduce that they are directly proportional. We noticed that changing certain values on the software affected our results. It was found that after calculating the density and inputting it into the CAHN software, more accurate readings for the surface tension were obtained. We anticipate that the surfactant and alkaline can change the surface tension of the solid surface. In our research, surfactant is desirable as it maintains a high surface tension even when alkaline percentage is increased.


2003 ◽  
Vol 36 (10) ◽  
pp. 3689-3694 ◽  
Author(s):  
Janelle M. Uilk ◽  
Ann E. Mera ◽  
Robert B. Fox ◽  
Kenneth J. Wynne

Author(s):  
Dandina N. Rao ◽  
Hussain H. Radwani

The engineering applications of spreading and adhesion phenomena involving fluids on solids are numerous. The adhesive and spreading interactions at the solid-fluid interfaces are well characterized by dynamic contact angles. This study reports on the results of an experimental investigation into the effect of solid surface roughness on dynamic contact angles in solid-liquid-liquid (S-L-L) systems. The experiment involved the use of Wilhelmy Plate apparatus to measure adhesion tension (which is the product of interfacial tension and cosine of the contact angle between the liquid-liquid interface and the solid surface), the DuNuoy tensiometer to measure the liquid-liquid interfacial tension, and a profilometer to characterize the roughness of the solid surfaces used. The components of the solid-liquid-liquid systems studied consisted of: (i) smooth glass, roughened quartz and an actual rock surface for the solid phase, (ii) normal-hexane and deionized water as the two immiscible liquid phases. The dynamic contact angles (advancing and receding angles) of the three-phase (rock-oil-water) system provide essential information about the wettability of petroleum resrvoirs. The wettability of a reservoir is an important parameter that affects oil recovery in primary, secondary, and enhanced recovery operations [1]. Contact angle measurements on smooth surfaces are generally used to characterize reservoir wettability. However pore surfaces within reservoir rocks are essentially rough and hence it is important to determine the effect of such roughness on measured contact angles. There is very little information in the open literature on the effect of surface roughness on dynamic contact angles in S-L-L systems. In the present work, four levels of roughness of solid surfaces of similar mineralogy (quartz and glass) were tested in hexane-deionized water fluid pair. The advancing and receding contact angles measured at ambient conditions were analyzed for wettability effects. It was found that as surface roughness increased, the dynamic contact angles also increased. The wettability of the rock-oil-water system shifted from weakly water-wet for the smooth glass to intermediate-wet for the roughened surface. The general trends observed in our study were found to be in good agreement with other published results. However, the generally held notion of increasing contact angle hysteresis with increasing roughness appears to be incorrect in solid-liquid-liquid systems.


Author(s):  
Claire M. Kunkle ◽  
Van P. Carey

A static contact angle is most often used as a means of quantifying the wetting characteristics of the liquid phase in vaporization processes at a solid surface. This metric is often convenient to measure and intuitive in its interpretation, but when a surface is superhydrophilic, the resulting low contact angles are difficult to measure accurately from photographs of sessile droplet profiles or contact line regions. For droplets at ultra low contact angles, small changes of contact angle can produce very large changes in wetted surface area, which makes small uncertainties in contact angle result in large uncertainties in wetted area. For hydrophilic nanostructured surfaces, another disadvantage is that the relationship of the macroscopic (apparent) contact angle to the nanoscale interaction of the liquid and vapor contact line with the nanostructured surface is not always clear. In this study, a new wetting metric based on spreading characteristics of sessile droplets is proposed that can be easily measured for hydrophilic surfaces. This metric also has the advantage that it is a more direct and sensitive indicator of how a droplet spreads on the surface. The spread area directly impacts heat transfer interactions between the droplet and the surface, therefore affecting evaporation time. Consequently, a metric that more directly illustrates the spread area provides an indication of how the wetting will affect these mechanisms. Use of the proposed new metric is explored in the context of evaporation and boiling applications with superhydrophilic surfaces. Characteristics of this metric are also compared to static contact angle and other choices of wetting metrics suggested in earlier studies, such as dynamic advancing and receding contact angles, and spreading coefficients. The effects of nanoscale structure and/or roughness on the proposed wetting metric are analyzed in detail. A model is developed that predicts the dependence of the proposed wetting parameter on intrinsic material wettability for rough, nano-structured surfaces. The model results demonstrate that the proposed metric is a more sensitive indicator of macroscopic wetting behavior than apparent contact angle when the surface is superhydrophilic. This characteristic of the proposed new metric is shown to have advantages over other wetting metrics in the specific case of superhydrophilic nanostructured surfaces. Application of the proposed wetting metric is demonstrated for some example nanostructured surfaces. The results of our study indicate that this proposed new metric can be particularly useful for characterizing the effects of variable wetting on vaporization processes on highly wetted nanostructured surfaces.


Author(s):  
Hie Chan Kang ◽  
Anthony M. Jacobi

A mass-area method is proposed to overcome problems in the measurement of the equilibrium contact angles for rough and hydrophilic surfaces. A goniometer usually measures the contact angle at the top plane of a rough surface, not the contact line of the solid-liquid interface. The present method estimates the contact angle indirectly from the volume of the liquid and the size of the contact area, assuming a spherical cap and consistent with a minimization of the free energy. The present method shows a roughly linear relationship with measurements by a goniometer for smooth surfaces of various solid materials with various liquids, but the goniometer measurements are smaller. An example test and the error of the present measurement method are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document