Metrics for Quantifying Surface Wetting Effects on Vaporization Processes at Nanostructured Hydrophilic Surfaces

Author(s):  
Claire M. Kunkle ◽  
Van P. Carey

A static contact angle is most often used as a means of quantifying the wetting characteristics of the liquid phase in vaporization processes at a solid surface. This metric is often convenient to measure and intuitive in its interpretation, but when a surface is superhydrophilic, the resulting low contact angles are difficult to measure accurately from photographs of sessile droplet profiles or contact line regions. For droplets at ultra low contact angles, small changes of contact angle can produce very large changes in wetted surface area, which makes small uncertainties in contact angle result in large uncertainties in wetted area. For hydrophilic nanostructured surfaces, another disadvantage is that the relationship of the macroscopic (apparent) contact angle to the nanoscale interaction of the liquid and vapor contact line with the nanostructured surface is not always clear. In this study, a new wetting metric based on spreading characteristics of sessile droplets is proposed that can be easily measured for hydrophilic surfaces. This metric also has the advantage that it is a more direct and sensitive indicator of how a droplet spreads on the surface. The spread area directly impacts heat transfer interactions between the droplet and the surface, therefore affecting evaporation time. Consequently, a metric that more directly illustrates the spread area provides an indication of how the wetting will affect these mechanisms. Use of the proposed new metric is explored in the context of evaporation and boiling applications with superhydrophilic surfaces. Characteristics of this metric are also compared to static contact angle and other choices of wetting metrics suggested in earlier studies, such as dynamic advancing and receding contact angles, and spreading coefficients. The effects of nanoscale structure and/or roughness on the proposed wetting metric are analyzed in detail. A model is developed that predicts the dependence of the proposed wetting parameter on intrinsic material wettability for rough, nano-structured surfaces. The model results demonstrate that the proposed metric is a more sensitive indicator of macroscopic wetting behavior than apparent contact angle when the surface is superhydrophilic. This characteristic of the proposed new metric is shown to have advantages over other wetting metrics in the specific case of superhydrophilic nanostructured surfaces. Application of the proposed wetting metric is demonstrated for some example nanostructured surfaces. The results of our study indicate that this proposed new metric can be particularly useful for characterizing the effects of variable wetting on vaporization processes on highly wetted nanostructured surfaces.

2018 ◽  
Vol 840 ◽  
pp. 131-153 ◽  
Author(s):  
J. T. Bradshaw ◽  
J. Billingham

Experiments have shown that a liquid droplet on an inclined plane can be made to move uphill by sufficiently strong, vertical oscillations (Brunet et al., Phys. Rev. Lett., vol. 99, 2007, 144501). In this paper, we study a two-dimensional, inviscid, irrotational model of this flow, with the velocity of the contact lines a function of contact angle. We use asymptotic analysis to show that, for forcing of sufficiently small amplitude, the motion of the droplet can be separated into an odd and an even mode, and that the weakly nonlinear interaction between these modes determines whether the droplet climbs up or slides down the plane, consistent with earlier work in the limit of small contact angles (Benilov and Billingham, J. Fluid Mech. vol. 674, 2011, pp. 93–119). In this weakly nonlinear limit, we find that, as the static contact angle approaches $\unicode[STIX]{x03C0}$ (the non-wetting limit), the rise velocity of the droplet (specifically the velocity of the droplet averaged over one period of the motion) becomes a highly oscillatory function of static contact angle due to a high frequency mode that is excited by the forcing. We also solve the full nonlinear moving boundary problem numerically using a boundary integral method. We use this to study the effect of contact angle hysteresis, which we find can increase the rise velocity of the droplet, provided that it is not so large as to completely fix the contact lines. We also study a time-dependent modification of the contact line law in an attempt to reproduce the unsteady contact line dynamics observed in experiments, where the apparent contact angle is not a single-valued function of contact line velocity. After adding lag into the contact line model, we find that the rise velocity of the droplet is significantly affected, and that larger rise velocities are possible.


Biomimetics ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 38
Author(s):  
Quentin Legrand ◽  
Stephane Benayoun ◽  
Stephane Valette

This investigation of morphology-wetting links was performed using a biomimetic approach. Three natural leaves’ surfaces were studied: two bamboo varieties and Ginkgo Biloba. Multiscale surface topographies were analyzed by SEM observations, FFT, and Gaussian filtering. A PDMS replicating protocol of natural surfaces was proposed in order to study the purely morphological contribution to wetting. High static contact angles, close to 135∘, were measured on PDMS replicated surfaces. Compared to flat PDMS, the increase in static contact angle due to purely morphological contribution was around 20∘. Such an increase in contact angle was obtained despite loss of the nanometric scale during the replication process. Moreover, a significant decrease of the hysteresis contact angle was measured on PDMS replicas. The value of the contact angle hysteresis moved from 40∘ for flat PDMS to less than 10∘ for textured replicated surfaces. The wetting behavior of multiscale textured surfaces was then studied in the frame of the Wenzel and Cassie–Baxter models. Whereas the classical laws made it possible to describe the wetting behavior of the ginkgo biloba replications, a hierarchical model was developed to depict the wetting behavior of both bamboo species.


1998 ◽  
Vol 518 ◽  
Author(s):  
Sang-Ho Lee ◽  
Myong-Jong Kwon ◽  
Jin-Goo Park ◽  
Yong-Kweon Kim ◽  
Hyung-Jae Shin

AbstractHighly hydrophobic fluorocarbon films were prepared by the vapor phase (VP) deposition method in a vacuum chamber using both liquid (3M's FC40, FC722) and solid sources (perfluorodecanoic acid (CF3(CF2)8COOH), perfluorododecane (C12F26)) on Al, Si and oxide coated wafers. The highest static contact angles of water were measured on films deposited on aluminum substrate. But relatively lower contact angles were obtained on the films on Si and oxide wafers. The advancing and receding contact angle analysis using a captive drop method showed a large contact angle hysteresis (ΔH) on the VP deposited fluorocarbon films. AFM study showed poor film coverage on the surface with large hysteresis. FTIR-ATR analysis positively revealed the stretching band of CF2 groups on the VP deposited substrates. The thermal stability of films was measured at 150°C in air and nitrogen atmospheres as a function of time. The rapid decrease of contact angles was observed on VP deposited FC and PFDA films in air. However, no decrease of contact angle on them was observed in N2.


Author(s):  
Jordan P. Mizerak ◽  
Van P. Carey

The dynamic behavior of impinging water droplets is studied in the context of varying surface morphologies on smooth and microstructured superhydrophilic surfaces. The goal of this study is to evaluate the capability of contact angle wall adhesion models to accurately produce spreading phenomena seen on a variety of surface types. We analyze macroscale droplet behavior, specifically spreading extent and impinging regime, in situations of varying microscale wetting character and surface morphology. Axisymmetric, volume of fluid (VOF) simulations with static contact angle wall adhesion are conducted in ANSYS Fluent. Simulations are performed on water for low Weber numbers (We<20) on surfaces with features of length scale 5–10μm. Advanced microstructured surfaces consisting of unique wetting characteristics and lengths on each face are also tested. Results show that while the contact angle wall adhesion model shows fair agreement for conventional surfaces, the model underestimates spreading by over 60% for surfaces exhibiting estimated contact angles below approximately 0.5°. Microstructured surfaces adapt the wetting behavior of smooth surfaces with higher effective contact angles based on contact line pinning on morphology features. The propensity of the model to produce Wenzel and Cassie-Baxter states is linked to the spreading radius, introducing an interdependency of microscale wetting and macroscale spreading behavior. Conclusions describing the impact of results on evaporative cooling are also discussed.


Author(s):  
Neeharika Anantharaju ◽  
Mahesh Panchagnula ◽  
Wayne Kimsey ◽  
Sudhakar Neti ◽  
Svetlana Tatic-Lucic

The wettability of silicon surface hydrophobized using silanization reagents was studied. The advancing and receding contact angles were measured with the captive needle approach. In this approach, a drop under study was held on the hydrophobized surface with a fine needle immersed in it. The asymptotic advancing and receding angles were obtained by incrementally increasing the volume added and removed, respectively, until no change in angles was observed. The values were compared with the previously published results. Further, the wetting behavior of water droplets on periodically structured hydrophobic surfaces was investigated. The surfaces were prepared with the wet etching process and contain posts and holes of different sizes and void fractions. The surface geometry brought up a scope to study the Wenzel (filling of surface grooves) and Cassie (non filling of the surface grooves) theories and effects of surface geometry and roughness on the contact angle. Experimental data point to an anomalous behavior where the data does not obey either Wenzel or Cassie type phenomenology. This behavior is explained by an understanding of the contact line topography. The effect of contact line topography on the contact angle was thus parametrically studied. It was also inferred that, the contact angle increased with the increase in void fraction. The observations may serve as guidelines in designing surfaces with the desired wetting behavior.


Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 405
Author(s):  
Nicola Suzzi ◽  
Giulio Croce

The bifurcation analysis of a film falling down an hybrid surface is conducted via the numerical solution of the governing lubrication equation. Instability phenomena, that lead to film breakage and growth of fingers, are induced by multiple contamination spots. Contact angles up to 75∘ are investigated due to the full implementation of the free surface curvature, which replaces the small slope approximation, accurate for film slope lower than 30∘. The dynamic contact angle is first verified with the Hoffman–Voinov–Tanner law in case of a stable film down an inclined plate with uniform surface wettability. Then, contamination spots, characterized by an increased value of the static contact angle, are considered in order to induce film instability and several parametric computations are run, with different film patterns observed. The effects of the flow characteristics and of the hybrid pattern geometry are investigated and the corresponding bifurcation diagram with the number of observed rivulets is built. The long term evolution of induced film instabilities shows a complex behavior: different flow regimes can be observed at the same flow characteristics under slightly different hybrid configurations. This suggest the possibility of controlling the rivulet/film transition via a proper design of the surfaces, thus opening the way for relevant practical application.


2014 ◽  
Vol 15 (2) ◽  
pp. 57-62
Author(s):  
Jin-Yeong Choi ◽  
Dong-Jun Kwon ◽  
Zuo-Jia Wang ◽  
Pyeong-Su Shin ◽  
Joung-Man Park

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Nan Chen ◽  
Xiyu Chen ◽  
Antonio Delgado

The dynamic contact angle model is applied in the formation process of a series of bubbles from Period-I regime to Period-II regime by using the VOF method on a 2D axisymmetric domain. In the first process of the current research, the dynamic contact angle model is validated by comparing the numerical results to the experimental data. Good agreement in terms of bubble shape and bubble detachment time is observed from a lower flow rate Q = 150.8 cm3/min (Re = 54.77, Period-I regime) to a higher flow rate Q = 603.2 cm3/min (Re = 219.07, Period-III regime). The comparison between the dynamic contact angle model and the static contact angle model is also performed. It is observed that the static contact angle model can obtain similar results as the dynamic contact angle model only for smaller gas flow rates (Q ≤ 150.8 cm3/min and Re ≤ 54.77)). For higher gas flow rates, the static contact angle model cannot produce good results as the dynamic contact angle model and has larger relative errors in terms of bubble detachment time and bubble shape.


Sign in / Sign up

Export Citation Format

Share Document