The Relation between Catalytic Activity of CO Oxidation and Support Structure in Oxidation Catalysts using Gold Nanoparticles

2005 ◽  
Vol 900 ◽  
Author(s):  
Shiho Nagano ◽  
Koji Tajiri ◽  
Yutaka Tai

ABSTRACTThiol-passivated gold nanoparticles were adsorbed on several kinds of support materials such as titania-coated silica aerogels and xerogels etc., and then the thiol was removed by heat treatment. The catalytic activity of the prepared composites for CO oxidation reaction was measured, and the effects of the support on the catalytic activity were investigated. Density of the supports, namely, whether aerogel supports or xerogel ones, hardly affected the catalytic activity. It was found that the catalysts having high catalytic activity could be obtained by this preparation method, even using the xerogels as the support. Calcination of the supports before adsorption of the gold nanoparticles affected the activity. The difference of the catalytic activity was observed between the composites with same gold nanoparticle size, so it was considered that the surface condition of the support materials affects the state of gold nanoparticles in composite.

2015 ◽  
Vol 51 (87) ◽  
pp. 15823-15826 ◽  
Author(s):  
Junya Ohyama ◽  
Taiki Koketsu ◽  
Yuta Yamamoto ◽  
Shigeo Arai ◽  
Atsushi Satsuma

Au/TiO2 prepared by CO treatment showed high catalytic activity for CO oxidation due to twinned structure of Au nanoparticles.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1475
Author(s):  
Ireneusz Kocemba ◽  
Izabela Śmiechowicz ◽  
Marcin Jędrzejczyk ◽  
Jacek Rogowski ◽  
Jacek Michał Rynkowski

The concept of very strong metal–support interactions (VSMSI) was defined in regard to the interactions that influence the catalytic properties of catalysts due to the creation of a new phase as a result of a solid-state chemical reaction between the metal and support. In this context, the high catalytic activity of the 1%Pt/Al2O3 catalyst in the CO oxidation reaction at room temperature was explained. The catalyst samples were reduced at different temperatures ranging from 500 °C to 800 °C and characterized using TPR, O2/H2 titration, CO chemisorption, TPD-CO, FTIR-CO, XRD, and TOF-SIMS methods. Based on the obtained results, it was claimed that with very high temperature reduction (800 °C), nonstoichiometric platinum species [Pt(Cl)Ox] strongly anchored to Al2O3 surface are formed. These species act as the oxygen adsorption sites.


2018 ◽  
Vol 20 (4) ◽  
pp. 236-242
Author(s):  
N. Turaeva

The volcano-type size dependence of the extraordinary catalytic activity of gold nanoparticles in CO oxidation is discussed on the basis of combination of the d-band model, the jellium model of metal clusters and the role of Fermi level in catalytic activity. The reaction rate depends non-monotonically upon the size of nanoparticles, due to exponential dependences of adsorption of reagents and desorption of products on the differences of the Fermi level of the metal cluster and antibonding states of CO and CO2 molecules forming chemical bonds with the nanoparticle, respectively. The origin of activation of the CO molecules towards the CO oxidation reaction by gold nanocatalysts is discussed in frame of the vibronic theory of chemical reactions based on the vibronic connection between charge transfer and nuclear processes.


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 131 ◽  
Author(s):  
Rola Mohammad Al Soubaihi ◽  
Khaled Mohammad Saoud ◽  
Myo Tay Zar Myint ◽  
Mats A. Göthelid ◽  
Joydeep Dutta

Carbon monoxide (CO) oxidation is considered an important reaction in heterogeneous industrial catalysis and has been extensively studied. Pd supported on SiO2 aerogel catalysts exhibit good catalytic activity toward this reaction owing to their CO bond activation capability and thermal stability. Pd/SiO2 catalysts were investigated using carbon monoxide (CO) oxidation as a model reaction. The catalyst becomes active, and the conversion increases after the temperature reaches the ignition temperature (Tig). A normal hysteresis in carbon monoxide (CO) oxidation has been observed, where the catalysts continue to exhibit high catalytic activity (CO conversion remains at 100%) during the extinction even at temperatures lower than Tig. The catalyst was characterized using BET, TEM, XPS, TGA-DSC, and FTIR. In this work, the influence of pretreatment conditions and stability of the active sites on the catalytic activity and hysteresis is presented. The CO oxidation on the Pd/SiO2 catalyst has been attributed to the dissociative adsorption of molecular oxygen and the activation of the C-O bond, followed by diffusion of adsorbates at Tig to form CO2. Whereas, the hysteresis has been explained by the enhanced stability of the active site caused by thermal effects, pretreatment conditions, Pd-SiO2 support interaction, and PdO formation and decomposition.


2011 ◽  
Vol 133 (10) ◽  
pp. 3444-3451 ◽  
Author(s):  
Fan Yang ◽  
Jesús Graciani ◽  
Jaime Evans ◽  
Ping Liu ◽  
Jan Hrbek ◽  
...  

2019 ◽  
Vol 777 ◽  
pp. 655-662 ◽  
Author(s):  
A.V. Egorysheva ◽  
O.G. Ellert ◽  
E. Yu Liberman ◽  
D.I. Kirdyankin ◽  
S.V. Golodukhina ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (96) ◽  
pp. 93985-93996 ◽  
Author(s):  
Yanan Tang ◽  
Jincheng Zhou ◽  
Zigang Shen ◽  
Weiguang Chen ◽  
Chenggang Li ◽  
...  

The geometric, electronic and catalytic characters of Fe atom embedded graphene (including monovacancy and divacancy) are investigated using the first-principles method, which gives a reference on designing graphene-based catalysts for CO oxidation.


2017 ◽  
Vol 32 (1) ◽  
pp. 23-28 ◽  
Author(s):  
Haiyan Tan ◽  
Yin Zhou ◽  
Yunfan Yan ◽  
Weibing Hu ◽  
Xinyu Shi ◽  
...  

2017 ◽  
Vol 9 (18) ◽  
pp. 15394-15398 ◽  
Author(s):  
Wenlan Ji ◽  
Zhiling Xu ◽  
Pengfei Liu ◽  
Suoying Zhang ◽  
Weiqiang Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document