scholarly journals A Sustainable Process for the Recovery of Anode and Cathode Materials Derived from Spent Lithium-Ion Batteries

2019 ◽  
Vol 11 (8) ◽  
pp. 2363 ◽  
Author(s):  
Guangwen Zhang ◽  
Zhongxing Du ◽  
Yaqun He ◽  
Haifeng Wang ◽  
Weining Xie ◽  
...  

The recovery of cathode and anode materials plays an important role in the recycling process of spent lithium-ion batteries (LIBs). Organic binders reduce the liberation efficiency and flotation efficiency of electrode materials derived from spent LIBs. In this study, pyrolysis technology is used to improve the recovery of cathode and anode materials from spent LIBs by removing organic binders. Pyrolysis characteristics of organics in electrode materials are investigated, and on this basis, the effects of pyrolysis parameters on the liberation efficiency of electrode materials are studied. Afterwards, flotation technology is used to separate cathode material from anode material. The results indicate that the optimum liberation efficiency of electrode materials is obtained at a pyrolysis temperature of 500 °C, a pyrolysis time of 15 min and a pyrolysis heating rate of 10 °C/min. At this time, the liberation efficiency of cathode materials is 98.23% and the liberation efficiency of anode materials is 98.89%. Phase characteristics of electrode materials cannot be changed under these pyrolysis conditions. Ultrasonic cleaning was used to remove pyrolytic residues to further improve the flotation efficiency of electrode materials. The cathode material grade was up to 93.89% with a recovery of 96.88% in the flotation process.

2019 ◽  
Vol 21 (23) ◽  
pp. 6342-6352 ◽  
Author(s):  
Xiangping Chen ◽  
Jiazhu Li ◽  
Duozhi Kang ◽  
Tao Zhou ◽  
Hongrui Ma

Valuable metals and Fe can be simultaneously recovered from spent LIBs to regenerate cathode materials by closed-loop recycling process.


2006 ◽  
Vol 972 ◽  
Author(s):  
Haiming Xie ◽  
Haiying Yu ◽  
Abraham F. Jalbout ◽  
Guiling Yang ◽  
Xiumei Pan ◽  
...  

AbstractWe design a way that the anode hosts provide lithium ion in lithium ion battery operation. If the limiting factors of the cathode materials are less, there will be more alternatives for it. It was proven to be successful by two kinds of test cells based on LixCn as anode material, and β-FeOOH or Cr8O21 as cathode materials. Their theoretical capacities are much higher than those present electrode materials. Unlike the lithium secondary batteries with lithium metal foil or lithium alloy as anode, this type of lithium ion batteries with LixCn as anode prohibit dendrite formation during charging-discharge process. The idea of lithium ion sources coming from the anode can come true successfully as a result that steady protecting solution be sought for LixCn.


RSC Advances ◽  
2015 ◽  
Vol 5 (61) ◽  
pp. 49651-49656 ◽  
Author(s):  
Y. L. Wang ◽  
X. Huang ◽  
F. Li ◽  
J. S. Cao ◽  
S. H. Ye

Pristine LNCM and LNCMA as Li-rich cathode materials for lithium ion batteries were synthesized via a sol–gel route. The Al-substituted LNCM sample exhibits an enhanced high rate performance and superior cyclability.


2019 ◽  
Vol 953 ◽  
pp. 121-126
Author(s):  
Zhe Chen ◽  
Quan Fang Chen ◽  
Sha Ne Zhang ◽  
Guo Dong Xu ◽  
Mao You Lin ◽  
...  

High energy density and rechargeable lithium ion batteries are attracting widely interest in renewable energy fields. The preparation of the high performance materials for electrodes has been regarded as the most challenging and innovative aspect. By utilizing a facile combustion synthesis method, pure nanostructure LiNi0.5Mn1.5O4 cathode material for lithium ion batteries were successfully fabricated. The crystal phase of the samples were characterized by X-Ray Diffraction, and micro-morphology as well as electrochemistry properties were also evaluated using FE-SEM, electrochemical charge-discharge test. The result shows the fabricated LiNi0.5Mn1.5O4 cathode materials had outstanding crystallinity and near-spherical morphologies. That obtained LiNi0.5Mn1.5O4 samples delivered an initial discharge capacity of 137.2 mAhg-1 at the 0.1 C together with excellent cycling stability and rate capability as positive electrodes in a lithium cell. The superior electrochemical performance of the as-prepared samples are owing to nanostructure particles possessing the shorter diffusion path for Li+ transport, and the nanostructure lead to large contact area to effectively improve the charge/discharge properties and the rate property. It is demonstrated that the as-prepared nanostructure LiNi0.5Mn1.5O4 samples have potential as cathode materials of lithium-ion battery for future new energy vehicles.


2019 ◽  
Vol 943 ◽  
pp. 141-148 ◽  
Author(s):  
Xiao Tong Jiang ◽  
Pan Wang ◽  
Long Hui Li ◽  
Jia Yu ◽  
Yu Xin Yin ◽  
...  

The cathode materials of LiFePO4 batteries decreases due to the gradual loss of lithium content during use. In this paper, the spent cathode materials were recycled with a carbon layer coated. The samples were prepared by a high temperature impurity removal procession and a solid phase repairing method. The LiFePO4 material obtained by the regeneration process has a discharge specific capacity of 105.4 mAh/g at 0.1 C after 10 cycles, and keeps it a considerable retention of 73.1 mAh/g at 1 C. This work provides a new routine in reusing lithium ion batteries.


2019 ◽  
Vol 85 ◽  
pp. 437-444 ◽  
Author(s):  
Li Li ◽  
Yifan Bian ◽  
Xiaoxiao Zhang ◽  
Ying Yao ◽  
Qing Xue ◽  
...  

Materials ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 40 ◽  
Author(s):  
Jun Liu ◽  
Qiming Liu ◽  
Huali Zhu ◽  
Feng Lin ◽  
Yan Ji ◽  
...  

Li-rich layered oxide cathode materials have become one of the most promising cathode materials for high specific energy lithium-ion batteries owning to its high theoretical specific capacity, low cost, high operating voltage and environmental friendliness. Yet they suffer from severe capacity and voltage attenuation during prolong cycling, which blocks their commercial application. To clarify these causes, we synthesize Li1.5Mn0.55Ni0.4Co0.05O2.5 (Li1.2Mn0.44Ni0.32Co0.04O2) with high-nickel-content cathode material by a solid-sate complexation method, and it manifests a lot slower capacity and voltage attenuation during prolong cycling compared to Li1.5Mn0.66Ni0.17Co0.17O2.5 (Li1.2Mn0.54Ni0.13Co0.13O2) and Li1.5Mn0.65Ni0.25Co0.1O2.5 (Li1.2Mn0.52Ni0.2Co0.08O2) cathode materials. The capacity retention at 1 C after 100 cycles reaches to 87.5% and the voltage attenuation after 100 cycles is only 0.460 V. Combining X-ray diffraction (XRD), scanning electron microscope (SEM), and transmission electron microscopy (TEM), it indicates that increasing the nickel content not only stabilizes the structure but also alleviates the attenuation of capacity and voltage. Therefore, it provides a new idea for designing of Li-rich layered oxide cathode materials that suppress voltage and capacity attenuation.


RSC Advances ◽  
2016 ◽  
Vol 6 (40) ◽  
pp. 33287-33294 ◽  
Author(s):  
Aziz Ahmad ◽  
Haiping Wu ◽  
Yufen Guo ◽  
Qinghai Meng ◽  
Yuena Meng ◽  
...  

Organic electrode materials are promising and future candidates for applications such as cathode in green lithium-ion batteries (LIBs).


2015 ◽  
Vol 44 (42) ◽  
pp. 18624-18631 ◽  
Author(s):  
Zhao-Jin Wu ◽  
Dong Wang ◽  
Zhi-Fang Gao ◽  
Hai-Feng Yue ◽  
Wei-Ming Liu

This study on Cu-doped Li[NiCoMn]1/3O2 provides support for reusing Cu as a beneficial dopant in the production of metal-doped Li[NiCoMn]1/3O2 from spent LIBs.


2018 ◽  
Vol 11 (04) ◽  
pp. 1850068 ◽  
Author(s):  
Changlei Niu

Aluminium has shown its superiority in stabilization of the monoclinic VO2(B) in free-standing nanobelts. In this paper, aluminium-doped VO2(B) nanobelts are successfully fabricated by a facile one-step hydrothermal method and used as cathode for lithium-ion battery. XPS results show that Al-doping promotes the formation of high valence state of vanadium in VO2(B) nanobelts. Due to the accommodation of valence state of vanadium and lattice volume, Al-doped VO2(B) nanobelts used as the cathode material for lithium-ion batteries exhibit better lithium storage properties with high capacity of 172[Formula: see text]mAh[Formula: see text]g[Formula: see text] and cycling stability than undoped VO2(B) nanobelts. This work demonstrates that the doping of aluminium can significantly enhance the electrochemical performance of VO2(B), suggesting that appropriate cationic doping is an efficient path to improve the electrochemical performance of electrode materials.


Sign in / Sign up

Export Citation Format

Share Document