Status of nc-Si:H Solar Cells at United Solar and Roadmap for Manufacturing a-Si:H and nc-Si:H Based Solar Panels

2007 ◽  
Vol 989 ◽  
Author(s):  
Baojie Yan ◽  
Guozhen Yue ◽  
Subhendu Guha

AbstractThis paper reviews the research and development of hydrogenated nanocrystalline silicon (nc-Si:H) solar cells at United Solar Ovonic LLC. We have been studying nc-Si:H solar cells since 2001 and have made significant progress. We have achieved an initial active-area cell efficiency of 15.1% using an a-Si:H/a-SiGe:H/nc-Si:H triple-junction structure, a stable active-area cell efficiency of 13.3% using an a-Si:H/nc-Si:H/nc-Si:H triple-junction structure, and a stable aperture-area (420 cm2) fully encapsulated module efficiency of 9.5% using an a-Si:H/nc-Si:H double-junction structure. Although the cell efficiencies with nc-Si:H in the middle and/or bottom cells have exceeded the corresponding efficiencies achieved using a-Si:H and a-SiGe:H, we still need to address several critical issues before using nc-Si:H in photovoltaic manufacturing plants. First, the cell efficiency needs to be improved further to show a clear advantage over the conventional a-Si:H/a-SiGe:H/a-SiGe:H triple-junction cell structure. Second, we need to increase the deposition rate further to make the nc-Si:H based technology more cost effective. Third, we need to develop a machine design to overcome the large-area uniformity issue, especially for very high frequency glow discharge deposition. Fourth, we need to qualify nc-Si:H based solar cell product, especially with respect to long term reliability. We have been addressing these critical issues, and will discuss the roadmap for manufacturing a-Si:H and nc-Si:H based solar panels using the roll-to-roll technology.

2010 ◽  
Vol 1245 ◽  
Author(s):  
Guozhen Yue ◽  
Laura Sivec ◽  
Baojie Yan ◽  
Jeff Yang ◽  
Subhendu Guha

AbstractWe report recent progress on hydrogenated nanocrystalline silicon (nc-Si:H) solar cells prepared at different deposition rates. The nc-Si:H intrinsic layer was deposited, using a modified very high frequency (MVHF) glow discharge technique, on Ag/ZnO back reflectors (BRs). The nc-Si:H material quality, especially the evolution of the nanocrystallites, was optimized using hydrogen dilution profiling. First, an initial active-area efficiency of 10.2% was achieved in a nc-Si:H single-junction cell deposited at ~5 Å/s. Using the improved nc-Si:H cell, we obtained 14.5% initial and 13.5% stable active-area efficiencies in an a-Si:H/nc-Si:H/nc-Si:H triple-junction structure. Second, we achieved a stabilized total-area efficiency of 12.5% using the same triple-junction structure but with nc-Si:H deposited at ~10 Å/s; the efficiency was measured at the National Renewable Energy Laboratory (NREL). Third, we developed a recipe using a shorter deposition time and obtained initial 13.0% and stable 12.7% active-area efficiencies for the same triple-junction design.


2004 ◽  
Vol 808 ◽  
Author(s):  
Guozhen Yue ◽  
Baojie Yan ◽  
Jessica M. Owens ◽  
Jeffrey Yang ◽  
Subhendu Guha

ABSTRACTWe have used the modified very-high-frequency glow discharge technique to deposit hydrogenated microcrystalline silicon (m c-Si:H) solar cells at high rates for use as the bottom cell in a multi-junction structure. We have investigated c-Si:H single-junction, a-Si:H/ c-Si:H double-junction, and a-Si:H/a-SiGe:H/m c-Si:H triple-junction solar cells and achieved initial active area efficiencies of 7.7%, 12.5%, and 12.4%, respectively. Issues related to improving material properties and device structures are addressed. By taking advantage of a lower degradation in m c-Si:H than a-Si:H and a-SiGe:H alloys, we have minimized the light induced effect in multi-junction structures by designing a bottom-cell-limited current mismatching. As a result, we have obtained a stable active-area cell efficiency of 11.2% with an a-Si:H/a-SiGe:H/μ c-Si:H triple-junction structure.


2009 ◽  
Vol 1153 ◽  
Author(s):  
Guozhen Yue ◽  
Laura Sivec ◽  
Baojie Yan ◽  
Jeff Yang ◽  
Subhendu Guha

AbstractWe report our recent progress on nc-Si:H single-junction and a-Si:H/nc-Si:H/nc-Si:H triple-junction cells made by a modified very-high-frequency (MVHF) technique at deposition rates of 10-15 Å/s. First, we studied the effect of substrate texture on the nc-Si:H single-junction solar cell performance. We found that nc-Si:H single-junction cells made on bare stainless steel (SS) have a good fill factor (FF) of ˜0.73, while it decreased to ˜0.65 when the cells were deposited on textured Ag/ZnO back reflectors. The open-circuit voltage (Voc) also decreased. We used dark current-voltage (J-V), Raman, and X-ray diffraction (XRD) measurements to characterize the material properties. The dark J-V measurement showed that the reverse saturated current was increased by a factor of ˜30 when a textured Ag/ZnO back reflector was used. Raman results revealed that the nc-Si:H intrinsic layers in the two solar cells have similar crystallinity. However, they showed a different crystallographic orientation as indicated in XRD patterns. The material grown on Ag/ZnO has more random orientation than that on SS. These experimental results suggested that the deterioration of FF in nc-Si:H solar cells on textured Ag/ZnO was caused by poor nc-Si:H quality. Based on this study, we have improved our Ag/ZnO back reflector and the quality of nc-Si:H component cells and achieved an initial and stable active-area efficiencies of 13.4% and 12.1%, respectively, in an a-Si:H/nc-Si:H/nc-Si:H triple-junction cell.


2012 ◽  
Vol 1426 ◽  
pp. 33-38 ◽  
Author(s):  
Guozhen Yue ◽  
Baojie Yan ◽  
Laura Sivec ◽  
Tining Su ◽  
Yan Zhou ◽  
...  

ABSTRACTMulti-junction solar cells incorporating hydrogenated nanocrystalline silicon (nc-Si:H) exhibit a high current capability and low light-induced degradation. In this paper, we report our recent progress in developing nc-Si:H solar cells using a modified very-high-frequency glow discharge technique. We achieved a short-circuit current density >30 mA/cm2and 10.6% conversion efficiency from single-junction solar cells. Using the improved nc-Si:H cells in an a-Si:H/nc-Si:H/nc-Si:H triple-junction structure, we attained initial and stabilized efficiencies of 13.9% and 13.6%, respectively. Issues related to improving material properties and device structures are addressed. Besides using the conventional techniques, such as hydrogen dilution profiling, optimized Ag/ZnO back reflector, and buffer layers, we found that compensation from Boron and Oxygen micro-doping is also critical in obtaining the above achievements.


1998 ◽  
Vol 507 ◽  
Author(s):  
S. Guha ◽  
J. Yang ◽  
A. Banerjee ◽  
S. Sugiyama

ABSTRACTTwo significant developments took place in 1997 in the field of amorphous silicon alloy photovoltaic technology. First, a world record stable cell efficiency of 13% was demonstrated using a spectral-splitting, triple-junction structure. Second, a triple-junction photovoltaic manufacturing facility of an annual capacity of 5 MW was commissioned. In order to make the transition from R&D to production, critical material issues and deposition methods which ensure the lowest module cost per delivered watt needed to be evaluated. In this paper, we discuss some of these issues with special reference to the cell materials.


2009 ◽  
Vol 1153 ◽  
Author(s):  
Jeffrey Yang ◽  
Baojie Yan ◽  
Guozhen Yue ◽  
Subhendu Guha

AbstractLight trapping effect in hydrogenated amorphous silicon-germanium alloy (a-SiGe:H) and nano-crystalline silicon (nc-Si:H) thin film solar cells deposited on stainless steel substrates with various back reflectors is reviewed. Structural and optical properties of the Ag/ZnO back reflectors are systematically characterized and correlated to solar cell performance, especially the enhancement in photocurrent. The light trapping method used in our current production lines employing an a-Si:H/a-SiGe:H/a-SiGe:H triple-junction structure consists of a bi-layer of Al/ZnO back reflector with relatively thin Al and ZnO layers. Such Al/ZnO back reflectors enhance the short-circuit current density, Jsc, by ˜20% compared to bare stainless steel. In the laboratory, we use Ag/ZnO back reflector for higher Jsc and efficiency. The gain in Jsc is about ˜30% for an a-SiGe:H single-junction cell used in the bottom cell of a multi-junction structure. In recent years, we have also worked on the optimization of Ag/ZnO back reflectors for nano-crystalline silicon (nc-Si:H) solar cells. We have carried out a systematic study on the effect of texture for Ag and ZnO. We found that for a thin ZnO layer, a textured Ag layer is necessary to increase Jsc, even though the parasitic loss is higher at the Ag and ZnO interface due to the textured Ag. However, a flat Ag can be used for a thick ZnO to reduce the parasitic loss, while the light scattering is provided by the textured ZnO. The gain in Jsc for nc-Si:H solar cells on Ag/ZnO back reflectors is in the range of ˜60-75% compared to cells deposited on bare stainless steel, which is much larger than the enhancement observed for a-SiGe:H cells. The highest total current density achieved in an a-Si:H/a-SiGe:H/nc-Si:H triple-junction structure on Ag/ZnO back reflector is 28.6 mA/cm2, while it is 26.9 mA/cm2 for a high efficiency a-Si:H/a-SiGe:H/a-SiGe:H triple-junction cell.


2004 ◽  
Vol 836 ◽  
Author(s):  
A. W. Bett ◽  
C. Baur ◽  
F. Dimroth ◽  
J. Schöne

ABSTRACTGaxIn1−xAs and GayIn1−yP layers were grown lattice mismatched to GaAs and Ge by low-pressure metal organic vapor phase epitaxy (LP-MOPVE). These materials are very promising for further increasing the efficiency of monolithic triple-junction solar cells. Different buffer layer structures were realized. Transmission electron microscopy and x-ray diffraction analysis were used to characterize the quality of the crystal. Both linear and step-graded buffers in GaxIn1−xAs were successfully used under an active solar cell structure. GayIn1−yP as buffer material showed a worse performance. Excellent solar cell performance was achieved for lattice mismatched single-, dual- and triple-junction solar cells.


2012 ◽  
Vol 1426 ◽  
pp. 69-74 ◽  
Author(s):  
Tining Su ◽  
Baojie Yan ◽  
Laura Sivec ◽  
Guozhen Yue ◽  
Jessica Owens-Mawson ◽  
...  

ABSTRACTWe report the results of using n-type hydrogenated nanocrystalline silicon oxide alloy (nc-SiOx:H) in hydrogenated nanocrystalline silicon (nc-Si:H) and amorphous silicon germanium alloy (a-SiGe:H) single-junction solar cells. We used VHF glow discharge to deposit nc-SiOx:H layers on various substrates for material characterizations. We also used VHF glow discharge to deposit the intrinsic layer in nc-Si:H solar cells. RF glow discharge was used for the deposition of the doped layers and the intrinsic layer in a-SiGe:H solar cells. Various substrates such as stainless steel (SS), Ag coated SS, and ZnO/Ag coated SS were used for different cell structures. We found that by using nc-SiOx:H to replace the ZnO and the a-Si:H n-layer in nc-Si:H solar cells, the cell structure is greatly simplified, while the cell performances remain nearly identical to those made using the conventional n-i-p structure on standard ZnO/Ag BR’s. Solar cells with nc-SiOx:H as the n layer directly deposited on textured Ag show similar quantum efficiency (QE) as the n-i-p cells on ZnO/Ag BRs. In both cases, QE is higher than that in the n-i-p cells made directly on Ag coated SS. This effect is probably caused by the shift of surface plasmon-polariton resonance frequency due to the difference in index of refraction of ZnO, nc-SiOx:H, and Si.


2013 ◽  
Vol 750-752 ◽  
pp. 970-973
Author(s):  
Chun Rong Xue ◽  
Xia Yun Sun

High-efficiency solar cells based on amorphous silicon technology are designed. Multi-junction amorphous silicon solar cells are discussed, how these are made and how their performance can be understood and optimized. Although significant amount of work has been carried out in the last twenty-five years, the Staebler-Wronski effect has limited the development of a-Si:H solar cells. As an alternative material, nc-Si:H has attracted remarkable attention. Taking advantage of a lower degradation in nc-Si:H than a-Si:H and a-SiGe:H alloys, the light induced degradation in triple junction structures has been minimized by designing a bottom-cell-limited current mismatching, and obtained a stable active-area cell efficiency. All this has been investigated in this paper.


2011 ◽  
Vol 1321 ◽  
Author(s):  
A. Banerjee ◽  
D. Beglau ◽  
T. Su ◽  
G. Pietka ◽  
G. Yue ◽  
...  

ABSTRACTWe report on the investigation of large area a-Si:H/a-SiGe:H double-junction and a-Si:H/a-SiGe:H/a-SiGe:H triple-junction solar cells prepared by our proprietary High Frequency (HF) glow discharge technique. For investigative purposes, we initially used the simpler double-junction structure. We studied the effect of: (1) Ge content, (2) cell thickness, and (3) SiH4 and GeH4 gas flow on the light-induced degradation of the solar cells. Our results show that the double-junction cells with different Ge concentration have open-circuit voltage (Voc) in the range of 1.62-1.75 V. Voc exhibits a flat plateau in the range of 1.65-1.72 V for both initial and stabilized states. The light-induced degradation for cells in this range of Voc is insensitive to the Ge content. In terms of thickness dependence of the intrinsic layers, we found that the initial efficiency increases with cell thickness in the thickness range 2000-4000 Å. However, light-induced degradation increases with increasing thickness. Consequently, the stabilized efficiency is invariant with cell thickness in the thickness range studied. The results of SiH4 and GeH4 gas flow on cell characteristics demonstrate that the deposition rate decreases by only 20% when the active gas flow is reduced to 0.25 times standard flow. The initial and stabilized efficiencies are similar. The information gleaned from the study was used to fabricate high efficiency, large area (~464 cm2) double- and triple-junction solar cells. The highest stable efficiency, as measured by NREL, was 9.8% and 11.0% for the double- and triple-junction structures, respectively.


Sign in / Sign up

Export Citation Format

Share Document