Chemical Tension in VLS Nanostructure Growth Process: From Nanohillocks to Nanowires

2007 ◽  
Vol 1017 ◽  
Author(s):  
Na Li ◽  
Teh Y. Tan ◽  
Ulrich Gösele

AbstractABSTRACTWe formulate a global equilibrium model to describe the growth of 1-d nanostructures in the VLS process by including also the chemical tension in addition to the physical tensions. The chemical tension derives from the Gibbs free energy release due to the growth of a crystal layer. The system global equilibrium is attained via the balance of the static physical tensions and the dynamic chemical tension, which allows the system to reach the minimum Gibbs free energy state. The model predicts, and provides conditions for the growth of nanowires of all sizes exceeding a lower thermodynamic limit. The model also predicts the conditions distinguishing the growth of nanaohillocks from nanowires.

1993 ◽  
Vol 320 ◽  
Author(s):  
S. L. Hsia ◽  
T. Y. Tan ◽  
P. L. Smith ◽  
G. E. Mcguire

ABSTRACTWe have studied the CoSi and CoSi2 phase formation sequence in (001) bulk and SOI Si wafers, using Co/Ti bimetallic layers as source materials which are suitable for growing epitaxial CoSi2 films on (001) Si. In bulk Si, co-formation of polycrystalline CoSi and epitaxial CoSi2 phases at T>500°C have been observed. These phases form respectively at the metal and Si sides of the film. For very long times and/or at high temperatures, only epitaxial CoSi2 is observed, e.g., for samples annealed at 560°C for 30 min or at 900°C for 10 s. When using (001) SOI Si with inexhaustible Co supply, only polycrystalline CoSi has been formed for a 900°C 10 s annealing, which is in contrast to the bulk Si results. This phenomenon is understood on the basis of Gibbs free energy reduction in forming the two phases. In the CoSi2 formation temperature range, Gibbs free energy release in forming CoSi2 is only ∼10% more than that of forming CoSi. Consequently, after all Si atoms have been consumed, the formation of CoSi becomes energetically more favorable, since the free energy reduction due to formation of 2x mole of CoSi is much larger than that due to formation of lx mole of CoSi2, where x is the SOI Si mole number.


2021 ◽  
Vol 1045 ◽  
pp. 179-185
Author(s):  
Athi Enkosi Mavukwana ◽  
Celestin Sempuga

The innovative G-H graphical technique, a plot of Enthalpy vs Gibbs free energy was utilized to obtain a thermodynamically attainable region (AR) for the gasification of waste tyres. The AR is used to examine the interaction between the competing reactions in a gasifier and used to identify optimal targets for the conversion of waste tyres. The objective is to investigate the effect of temperature on the product selectivity. a temperature range of 25-1500°C at 1 bar was used for the analysis. The results show that at temperatures from 200°C to 600°C methane and carbon dioxide are dominant products at minimum Gibbs free energy. However, as the temperature increases, methane production decreases and hydrogen production become more favourable. Between 600°C and 700°C, carbon dioxide and hydrogen are dominant products. The AR results show that the products of gasification (CO and H2) are preferred products at minimum Gibbs free energy only at temperatures from 800°C to 1500°C, when both water and oxygen are used as oxidants. Therefore, syngas production from tyres is only feasible at high temperatures. Temperatures above 1000°C are recommended to prevent the formation of intermediate radicals.


Author(s):  
Dennis Sherwood ◽  
Paul Dalby

Building on the previous chapter, this chapter examines gas phase chemical equilibrium, and the equilibrium constant. This chapter takes a rigorous, yet very clear, ‘first principles’ approach, expressing the total Gibbs free energy of a reaction mixture at any time as the sum of the instantaneous Gibbs free energies of each component, as expressed in terms of the extent-of-reaction. The equilibrium reaction mixture is then defined as the point at which the total system Gibbs free energy is a minimum, from which concepts such as the equilibrium constant emerge. The chapter also explores the temperature dependence of equilibrium, this being one example of Le Chatelier’s principle. Finally, the chapter links thermodynamics to chemical kinetics by showing how the equilibrium constant is the ratio of the forward and backward rate constants. We also introduce the Arrhenius equation, closing with a discussion of the overall effect of temperature on chemical equilibrium.


Sign in / Sign up

Export Citation Format

Share Document