Chemoselective Polymers, Nanoparticles, and Nanotubes in Chemical Sensor and Preconcentrator Applications

2008 ◽  
Vol 1081 ◽  
Author(s):  
Duane L Simonson ◽  
R Andrew McGill ◽  
Michael R. Papantonakis ◽  
Bernadette A. Higgins ◽  
Jennifer L. Stepnowski

AbstractThe functionalization of polymers and nano-materials with 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) groups provides materials suitable for a variety of preconcentrator and sensor applications. These are especially useful in high vapor pressure, hydrogen-bond basic vapor collection. These specific interactions lead to high efficiency collection of basic analytes such as DMMP (organophosphonates), DNT, and TNT (nitroaromatics). The lower vapor pressure analytes such as RDX have a larger dependence on surface interactions without specific (hydrogen bond) interactions. The use of carbosilane polymers with HFIP pendant groups offers dramatic improvements over fluoropolyol (FPOL) and siloxane polymers in sensor and precon applications. The sorbent capacity and thermal stability are both dramatically improved. In this work we will demonstrate the use of Carbon Nanotube (CNT) composites with HFIP polymers as sorbent coatings and evaluate their use as SPME coatings.

Author(s):  
Eric J. Houser ◽  
Duane L. Simonson ◽  
Jennifer L. Stepnowski ◽  
Mike R. Papantonakis ◽  
Stuart K. Ross ◽  
...  

2012 ◽  
Vol 11 (06) ◽  
pp. 1237-1259 ◽  
Author(s):  
CUIHONG WANG ◽  
RUIQIN ZHANG ◽  
ZIJING LIN

Hydrogen bond interactions in biological systems are important scientific issues but are challenging for their theoretical determinations at quantum-mechanical level of theory. Due to the different approximations, the available theoretical approaches often predict diverse hydrogen bond lengths and strengths. In this work, we evaluated the reliabilities of a number of widely used theoretical approaches including HF, SVWN, BLYP, PW91, B3LYP, BH and HLYP, B97D, M06L, MP2, and DFTB-D in studying hydrogen bonding, by calculating the hydrogen bond lengths and binding energies of 23 dimers formed by HCOOH , NH3 and Glycine. We also compared the effects of STO-3G, 6-31+G**, 6-311++G** and 6-311++G(2df,2p) basis sets on the results. Our result shows that, M06L, B3LYP and BHandHLYP methods can predict accurate dimer structures with a moderate basis set. Moreover, DFTB-D also gives reasonably reliable results with high efficiency and satisfactory precision, being a good choice for studying complex structures which contain hydrogen bonds.


2020 ◽  
Vol 92 (24) ◽  
pp. 16253-16259
Author(s):  
Megan E. Harries ◽  
Cheryle N. Beuning ◽  
Bridger L. Johnston ◽  
Tara M. Lovestead ◽  
Jason A. Widegren

2012 ◽  
Vol 68 (8) ◽  
pp. m1055-m1055 ◽  
Author(s):  
M. Mobin Shaikh ◽  
Veenu Mishra ◽  
Priti Ram ◽  
Anil Birla

The structure of the centrosymmetric title complex, [Cu(C5H9O2)2(C6H7NO)2], has the CuIIatom on a centre of inversion. The CuIIatom is six-coordinate with a distorted octahedral geometry, defined by the N and O atoms of the chelating 2-(2-hydroxymethyl)pyridine ligands and two carboxylate O atoms from two monodentate pivalate ions. The crystal packing is stabilized by intermolecular C—H...O and intramolecular O—H...O hydrogen-bond interactions.


2012 ◽  
Vol 68 (9) ◽  
pp. o335-o337 ◽  
Author(s):  
Saul H. Lapidus ◽  
Andreas Lemmerer ◽  
Joel Bernstein ◽  
Peter W. Stephens

A further example of using a covalent-bond-forming reaction to alter supramolecular assembly by modification of hydrogen-bonding possibilities is presented. This concept was introduced by Lemmerer, Bernstein & Kahlenberg [CrystEngComm(2011),13, 55–59]. The title structure, C9H11N3O·C7H6O4, which consists of a reacted niazid molecule,viz.N′-(propan-2-ylidene)nicotinohydrazide, and 2,4-dihydroxybenzoic acid, was solved from powder diffraction data using simulated annealing. The results further demonstrate the relevance and utility of powder diffraction as an analytical tool in the study of cocrystals and their hydrogen-bond interactions.


2008 ◽  
Vol 95 (10) ◽  
pp. 4737-4747 ◽  
Author(s):  
Berenice Venegas ◽  
Marla R. Wolfson ◽  
Peter H. Cooke ◽  
Parkson Lee-Gau Chong

2006 ◽  
Vol 252 (13) ◽  
pp. 4871-4876 ◽  
Author(s):  
E.J. Houser ◽  
D.B. Chrisey ◽  
M. Bercu ◽  
N.D. Scarisoreanu ◽  
A. Purice ◽  
...  

2016 ◽  
Vol 18 (27) ◽  
pp. 18145-18160 ◽  
Author(s):  
Claire R. Ashworth ◽  
Richard P. Matthews ◽  
Tom Welton ◽  
Patricia A. Hunt

Computational analysis indicates flexibility and diversity in the hydrogen bonding, but limited charge delocalisation, within the choline chloride–urea eutectic.


Sign in / Sign up

Export Citation Format

Share Document