scholarly journals Doubly ionic hydrogen bond interactions within the choline chloride–urea deep eutectic solvent

2016 ◽  
Vol 18 (27) ◽  
pp. 18145-18160 ◽  
Author(s):  
Claire R. Ashworth ◽  
Richard P. Matthews ◽  
Tom Welton ◽  
Patricia A. Hunt

Computational analysis indicates flexibility and diversity in the hydrogen bonding, but limited charge delocalisation, within the choline chloride–urea eutectic.

2012 ◽  
Vol 68 (9) ◽  
pp. o335-o337 ◽  
Author(s):  
Saul H. Lapidus ◽  
Andreas Lemmerer ◽  
Joel Bernstein ◽  
Peter W. Stephens

A further example of using a covalent-bond-forming reaction to alter supramolecular assembly by modification of hydrogen-bonding possibilities is presented. This concept was introduced by Lemmerer, Bernstein & Kahlenberg [CrystEngComm(2011),13, 55–59]. The title structure, C9H11N3O·C7H6O4, which consists of a reacted niazid molecule,viz.N′-(propan-2-ylidene)nicotinohydrazide, and 2,4-dihydroxybenzoic acid, was solved from powder diffraction data using simulated annealing. The results further demonstrate the relevance and utility of powder diffraction as an analytical tool in the study of cocrystals and their hydrogen-bond interactions.


2019 ◽  
Vol 43 (40) ◽  
pp. 15956-15967 ◽  
Author(s):  
Priya Verma ◽  
Anubha Srivastava ◽  
Anuradha Shukla ◽  
Poonam Tandon ◽  
Manishkumar R. Shimpi

The hydrogen bond interactions in the cocrystal lead to spatial arrangements enhancing the physicochemical properties.


2009 ◽  
Vol 62 (4) ◽  
pp. 341 ◽  
Author(s):  
Andrew P. Abbott ◽  
John Collins ◽  
Ian Dalrymple ◽  
Robert C. Harris ◽  
Reena Mistry ◽  
...  

The present paper describes the design and operation of the first large-scale extraction and separation of metals from a complex matrix using an ionic liquid. The liquid was a deep eutectic solvent based on choline chloride. The hydrogen-bond donors were mixed to optimize solubility and fluid viscosity. It was found that the incorporation of a fine particulate dust actually decreased the viscosity of the fluid. The present paper shows that selective extraction of zinc and lead can be achieved through judicious choice of the hydrogen-bond donor and it is also shown that metals in solution can be separated using cementation with zinc powder. Electrowinning of pure zinc is demonstrated but scale-up tests suggest that the process is relatively slow and has poor current efficiency. An alternative methodology was developed to rapidly recover the zinc from solution using dilute ammonia solution. It is also shown for the first time that cementation can be efficiently carried out in ionic liquids because the recovered metal is porous and allows thick layers to be deposited.


2015 ◽  
Vol 39 (2) ◽  
pp. 822-828 ◽  
Author(s):  
Christer B. Aakeröy ◽  
Tharanga K. Wijethunga ◽  
John Desper

A molecular electrostatic potential based approach for anticipating the outcome of hydrogen-bond interactions in a competitive scenario is described.


2014 ◽  
Vol 16 (15) ◽  
pp. 6946-6956 ◽  
Author(s):  
Yan-Zhen Zheng ◽  
Nan-Nan Wang ◽  
Yu Zhou ◽  
Zhi-Wu Yu

We examine and compare the halogen- and hydrogen-bonding interactions between benzene derivatives and DMSO by experimental and computational methods.


2021 ◽  
Vol 1195 (1) ◽  
pp. 012006
Author(s):  
N R Yusuf ◽  
S Yusup ◽  
C L Yiin ◽  
P J Ratri ◽  
A A Halim ◽  
...  

Abstract The concept of sustainable and green solvent has always highlighted in the field of energy and environmental science. The synthesis and application of natural-based Low Transition Temperature Mixture (LTTM) as a novel and green solvent for the lignocellulose biomass pre-treatment such as delignification of Oil-Palm Empty Fruit Bunch (EFB) have been greatly emphasized. In this present work, the investigation of LTTM efficiency as green solvent in delignification process was conducted using both theoretical and experimental studies. Initially, screening of solvation properties of different types of hydrogen bond acceptor (HBA) and predicted hydrogen bond donor (HBD) for synthesis of LTTMs was conducted using conductor-like screening model (COSMO-RS) software and formation of hydrogen bonding was evidenced using NMR spectroscopy analysis. Three types of HBA namely sucrose, choline chloride and monosodium glutamate were mixed with malic acids as HBD and their charge density distribution on the surface was determined through sigma profile (σ). The COSMO-RS results determined the σ profile of pure component malic acid to be 11.42, sucrose to be 25.37 and the total value of σ profile for mixtures is 14.19 as the best combination of LTTM composition compared to LTTM from choline chloride and monosodium glutamate (MSG). The reliability of the COSMO-RS predictions data was correlated with Nuclear Magnetic Resonance (NMR) analysis through determination of peaks with chemical shifts hydrogen bonding that suggested existence of potential interaction between malic acids and sucrose has occurred.


2015 ◽  
Vol 13 (5) ◽  
pp. 1339-1346 ◽  
Author(s):  
Fabiola Zapata ◽  
Paula Sabater ◽  
Antonio Caballero ◽  
Pedro Molina

A bidentate bis-(benzimidazolium) receptor containing pyrene as fluorescent signaling units recognizes sulphate and hydrogenpyrophosphate in a competitive water–DMSO medium through combinations of cationic and neutral C–H hydrogen bonding.


2014 ◽  
Vol 70 (6) ◽  
pp. o629-o630 ◽  
Author(s):  
Alex Fabiani Claro Flores ◽  
Darlene Correia Flores ◽  
Juliano Rosa de Menezes Vicenti ◽  
Lucas Pizzuti ◽  
Patrick Teixeira Campos

In the crystal structure of the title compound, C14H12Cl3NO2, no classical hydrogen-bonding interactions are observed. The methylene fragments of the benzyl groups participate in non-classic hydrogen-bond interactions with the carbonyl O atoms of neighboring molecules, generating co-operative centrosymmetric dimers withR55(10) ring motifs. The overall molecular arrangement in the unit cell seems to be highly influenced by secondary non-covalent weak C—Cl...π [Cl...Cg(phenyl ring) = 3.732 (2) Å] and C—O...π [O...Cg(pyrrolidine ring) = 2.985 (2) Å] contacts.


Sign in / Sign up

Export Citation Format

Share Document