scholarly journals Toward Modeling Charge-Defect Reactions at the Atomistic Level

2008 ◽  
Vol 1104 ◽  
Author(s):  
Steve Valone

AbstractDefect reactions involving charged species are commonplace in nuclear fuels fabrication and burn-up. Even the simplest of these fuels, uranium dioxide (UO2), typically involves the nominal charge states of +3, +4, and +5 or +6 in U and -1 and -2 states in O. Simulations that attempt to model evolutionary processes in the fuels require tracking changes among these charge states. At the atomistic level, modeling defect reactions poses a particularly vexing problem. Typical potential energy surfaces do not have this type of physical phenomena built into them. Those models that do attempt to model charge-defect reactions do not have especially strong physical bases for the models. For instance, most do not obey established limits of charge behavior at dissociation or lack internal consistency. This work presents substantial generalizations to earlier work of Perdew et al. No matter the size of the system, total system hamiltonians can be decomposed into subsystem or site hamiltonians and coulombic interactions. Site hamiltonians can be evaluated in a spectral representation, once an integer number of electrons are assigned. For both pair and individual site hamiltonians a dilemma emerges in that many sites are better understood as possessing a fractional charge. The dilemma is how to weight the site integer-charge states in a physically consistent manner. One approach to solving the dilemma results in two distinct charge-dependent energy contributions emerge, arising from intra- and inter-subsystem charge transfer. Further analysis results in a model of the intra-subsystem charge-transfer that can accommodate the mixed valence states of either U or O in nuclear fuels. Mixed valence properties add complications to the model that originate in the phenomenological fact that it typically requires different amounts of energy to increase or decrease charge. As a result of the inherent complexity one has the option of using multiple charges, a concept with strong ties to shell models, or modeling parameters not directly related to charge as functions of charge. This latter approach is illustrated by invoking a minimization principle that does preserve the important dissociation limits of Perdew et al., in order to complete the model.

2017 ◽  
Vol 46 (5) ◽  
pp. 1606-1617 ◽  
Author(s):  
D. Mikhailova ◽  
N. N. Kuratieva ◽  
Y. Utsumi ◽  
A. A. Tsirlin ◽  
A. M. Abakumov ◽  
...  

The V1−xRexO2 solid solution with 0.03 < x ≤ 0.15 undergoes below 1000 K a phase separation to two isostructural phases with mixed-valence states Re4+/Re6+, while only a single phase exists for x ≤ 0.03 and x ≥ 0.30 with Re6+ and Re4+, respectively.


2021 ◽  
pp. 088532822110134
Author(s):  
Sushant Singh ◽  
Udit Kumar ◽  
David Gittess ◽  
Tamil S Sakthivel ◽  
Balaashwin Babu ◽  
...  

Many studies have linked reactive oxygen species (ROS) to various diseases. Biomedical research has therefore sought a way to control and regulate ROS produced in biological systems. In recent years, cerium oxide nanoparticles (nanoceria, CNPs) have been pursued due to their ability to act as regenerative ROS scavengers. In particular, they are shown to have either superoxide dismutase (SOD) or catalase mimetic (CAT) potential depending on the ratio of Ce3+/Ce4+ valence states. Moreover, it has been demonstrated that SOD mimetic activity can be diminished by the presence of phosphate, which can be a problem given that many biological systems operate in a phosphate-rich environment. Herein, we report a CNP formulation with both SOD and catalase mimetic activity that is preserved in a phosphate-rich media. Characterization demonstrated a highly dispersed, stable solution of uniform-sized, spherical-elliptical shaped CNP of 12 ± 2 nm, as determined through dynamic light scattering, zeta potential, and transmission electron microscopy. Mixed valence states of Ce ions were observed via UV/Visible spectroscopy and XPS (Ce3+/Ce4+ > 1) (Ce3+∼ 62%). X-ray diffraction and XPS confirmed the presence of oxygen-deficient cerium oxide (CeO2-x) particles. Finally, the CNP demonstrated very good biocompatibility and efficient reduction of hydrogen peroxide under in-vitro conditions.


2018 ◽  
Vol 2 (11) ◽  
Author(s):  
Q. Tao ◽  
T. Ouisse ◽  
D. Pinek ◽  
O. Chaix-Pluchery ◽  
F. Wilhelm ◽  
...  

Author(s):  
Tianlei Ma ◽  
Marek Nikiel ◽  
Andrew G. Thomas ◽  
Mohamed Missous ◽  
David J. Lewis

AbstractIn this report, we prepared transparent and conducting undoped and molybdenum-doped tin oxide (Mo–SnO2) thin films by aerosol-assisted chemical vapour deposition (AACVD). The relationship between the precursor concentration in the feed and in the resulting films was studied by energy-dispersive X-ray spectroscopy, suggesting that the efficiency of doping is quantitative and that this method could potentially impart exquisite control over dopant levels. All SnO2 films were in tetragonal structure as confirmed by powder X-ray diffraction measurements. X-ray photoelectron spectroscopy characterisation indicated for the first time that Mo ions were in mixed valence states of Mo(VI) and Mo(V) on the surface. Incorporation of Mo6+ resulted in the lowest resistivity of $$7.3 \times 10^{{ - 3}} \Omega \,{\text{cm}}$$ 7.3 × 10 - 3 Ω cm , compared to pure SnO2 films with resistivities of $$4.3\left( 0 \right) \times 10^{{ - 2}} \Omega \,{\text{cm}}$$ 4.3 0 × 10 - 2 Ω cm . Meanwhile, a high transmittance of 83% in the visible light range was also acquired. This work presents a comprehensive investigation into impact of Mo doping on SnO2 films synthesised by AACVD for the first time and establishes the potential for scalable deposition of SnO2:Mo thin films in TCO manufacturing. Graphical abstract


2021 ◽  
Vol 2 (8) ◽  
pp. 2759-2759
Author(s):  
Atsushi Suzuki ◽  
Takeo Oku

Correction for ‘Effects of mixed-valence states of Eu-doped FAPbI3 perovskite crystals studied by first-principles calculation’ by Atsushi Suzuki et al., Mater. Adv., 2021, DOI: 10.1039/D0MA00994F.


1987 ◽  
Vol 19 (1-3) ◽  
pp. 907-910 ◽  
Author(s):  
Y. Wada ◽  
T. Mitani ◽  
M. Yamashita ◽  
T. Koda

1997 ◽  
Vol 104 (11) ◽  
pp. 705-708 ◽  
Author(s):  
H. Mizoguchi ◽  
H. Kawazoe ◽  
H. Hosono ◽  
S. Fujitsu

Sign in / Sign up

Export Citation Format

Share Document